DIVISION PROBLEM OF MOMENT FUNCTIONALS

J.H. LEE AND K.H. KWON

Abstract

For a quasi-definite moment functional σ and nonzero polynomials $A(x)$ and $D(x)$, we define another moment functional τ by the relation $$
D(x) \tau=A(x) \sigma
$$

In other words, τ is obtained from σ by a linear spectral transform. We find necessary and sufficient conditions for τ to be quasi-definite when $D(x)$ and $A(x)$ have no nontrivial common factor. When τ is also quasi-definite, we also find a simple representation of orthogonal polynomials relative to τ in terms of orthogonal polynomials relative to σ. We also give two illustrative examples when σ is the Laguerre or Jacobi moment functional.

1. Introduction. Let σ be a quasi-definite moment functional, i.e., a linear function on \mathbf{P}, the space of polynomials in one variable, satisfying the Hamburger condition: $\Delta_{n}:=\left|\left[\sigma_{i+j}\right]_{i, j=0}^{n}\right| \neq 0, n \geq 0$, where $\sigma_{n}:=\left\langle\sigma, x^{n}\right\rangle, n \geq 0$, are the moments of σ. Then the monic orthogonal polynomial system (MOPS) $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$, relative to σ, is given by

$$
P_{0}(x)=1 \quad \text { and } P_{n}(x)=\frac{1}{\Delta_{n-1}}\left|\begin{array}{cccc}
\sigma_{0} & \sigma_{1} & \cdots & \sigma_{n} \tag{1.1}\\
\sigma_{1} & \sigma_{2} & \cdots & \sigma_{n+1} \\
\vdots & \vdots & & \vdots \\
\sigma_{n-1} & \sigma_{n} & \cdots & \sigma_{2 n-1} \\
1 & x & \cdots & x^{n}
\end{array}\right|, \quad n \geq 1
$$

However, in the computational viewpoint, the formula (1.1) is of little practical value for large n. Instead we might use the three-term recurrence relation satisfied by any MOPS

$$
P_{n+1}(x)=\left(x-b_{n}\right) P_{n}(x)-c_{n} P_{n-1}(x), \quad n \geq 0,\left(P_{-1}(x)=0, P_{0}(x)=1\right)
$$

[^0] 2001.

[^0]: 1991 AMS Mathematics subject classification. 33C45.
 Keywords and phrases. Quasi-definiteness, moment functionals, division problem. This work is partially supported by BK-21 project and KOSEF (99-2-101-001-5). Received by the editors on October 26, 2000, and in revised form on July 3,

