GENERALIZED UMEMURA POLYNOMIALS

ANATOL N. KIRILLOV AND MAKOTO TANEDA

ABSTRACT. We introduce and study generalized Umemura polynomials $U_{n, m}^{(k)}(z, w ; a, b)$ which are a natural generalization of the Umemura polynomials $U_{n}(z, w ; a, b)$ related to Painlevé VI equation. We will show that if $a=b$ or $a=0$ or $b=0$, then polynomials $U_{n, m}^{(0)}(z, w ; a, b)$ generate solutions to Painlevé VI. We will describe a connection between polynomials $U_{n, m}^{(0)}(z, w ; a, 0)$ and certain Umemura polynomials $U_{k}(z, w ; \alpha, \beta)$.

1. Introduction. There is a vast body of literature devoted to the Painlevé VI equation $P_{\mathrm{VI}}:=P_{\mathrm{VI}}(\alpha, \beta, \gamma, \delta)$:

$$
\begin{align*}
\frac{d^{2} q}{d t^{2}}= & \frac{1}{2}\left(\frac{1}{q}+\frac{1}{q-1}+\frac{1}{q-t}\right)\left(\frac{d q}{d t}\right)^{2}-\left(\frac{1}{t}+\frac{1}{t-1}+\frac{1}{q-t}\right)\left(\frac{d q}{d t}\right) \tag{1.1}\\
& +\frac{q(q-1)(q-t)}{t^{2}(t-1)^{2}}\left(\alpha-\beta \frac{t}{q^{2}}+\gamma \frac{(t-1)}{(q-1)^{2}}+\delta \frac{t(t-1)}{(q-t)^{2}}\right)
\end{align*}
$$

where $t \in \mathbf{C}, q:=q(t ; \alpha, \beta, \gamma, \delta)$ is a function of t and $\alpha, \beta, \gamma, \delta$ are arbitrary complex parameters. It is well known and goes back to Painlevé that any solution $q(t)$ of the equation P_{VI} satisfies the socalled Painlevé property:

- the critical points 0,1 and ∞ of the equation (1.1) are the only fixed singularities of $q(t)$.
- any movable singularity of $q(t)$, the position of which depends on integration constants, is a pole.

In this paper we introduce and initiate the study of certain special polynomials related to the Painleve VI equation, namely, the generalized Umemura polynomials $U_{n, m}^{(k)}(z, w ; a, b)$. These polynomials have many interesting combinatorial and algebraic properties and in the particular case $n=0=k$ coincide with Umemura's polynomials $U_{m}\left(z^{2}, w^{2} ; a, b\right)$,

[^0]
[^0]: Received by the editors on November 7, 2000, and in revised form on September 15, 2001.

