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INVERSION TECHNIQUES AND
COMBINATORIAL IDENTITIES:

BALANCED HYPERGEOMETRIC SERIES

CHU WENCHANG

Dedicated to my teacher L.C. Hsu on the occasion of his 80th birthday

ABSTRACT. Following the earlier works on Inversion tech-
niques and combinatorial identities, the duplicate form of the
Gould-Hsu [18] inversion theorem is constructed. As applica-
tions, several terminating balanced hypergeometric formulas
are demonstrated, including those due to Andrews [3], which
have been the primary stimulation to the present research.
Encouraged by the recent work of Standon [23], we establish
two higher hypergeometric evaluations with three additional
parameters, which specialize further to over two hundred hy-
pergeometric identities.

For a complex c and a natural number n, denote the rising shifted-
factorial by

(0.1a) (c)0 = 1, (c)n = c(c+ 1) · · · (c+ n− 1), n = 1, 2, . . . .

Following Bailey [8], the hypergeometric series, for an indeterminate z
and two nonnegative integers m and n, is defined by

(0.1b) 1+nFm

[
a0, a1, · · · , an

b1, · · · , bm
; z

]
=

∞∑
k=0

(a0)k(a1)k · · · (an)k
k!(b1)k · · · (bm)k zk,

where {ai} and {bj} are complex parameters such that no zero factors
appear in the denominators of the summands on the righthand side.
When the variable z = 1, it will be omitted from the hypergeometric
notation. If one of the numerator parameters {ak} is a negative integer,
then the series becomes terminating, which reduces to a polynomial in
z.
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