ALGEBRA OF DIFFERENTIAL FORMS WITH
 EXTERIOR DIFFERENTIAL $d^{3}=0$ IN DIMENSIONS ONE AND TWO

N. BAZUNOVA

Abstract

In this paper, we construct the algebra of differential forms with exterior differential satisfying $d^{3}=$ 0 over an associative algebra with one and n generators satisfying quadratic relations. Supposing $d^{2} \neq 0$, we introduce the second order differentials $d^{2} x^{i}$. We also assume that the homomorphism defining a first order differential calculus is linear in variables, and that there are no relations between the terms $\left(d x^{i}\right)^{2}$ and $d^{2} x^{j}$. A graded q-differential algebra with $d^{3}=0$ is constructed by means of the Wess-Zumino method. The commutation relations between generators $x^{i}, d x^{j}, d^{2} x^{k}$ of the algebra of differential forms in pairs and themselves are found. In the case of the algebra with n generators, the commutation relations between noncommutataive derivatives ∂_{i} and generators $d^{2} x^{j}$ also are found, and the consistency conditions are described.

1. Introduction. An idea to generalize the classical exterior differential calculus with $d^{2}=0$ to the case $d^{N}=0, N>2$, arises in a recent series of papers $[\mathbf{2}-\mathbf{4}, \mathbf{6}]$, where the different approaches to this idea are developed, and these generalizations have been proposed and studied. In the paper [5] such a generalization is provided by the notion of graded q-differential algebra which is, according to the definition given in [2], an associative unital \mathbf{N}-graded algebra endowed with a linear endomorphism d (q-differential) of degree 1 satisfying $d^{N}=0$ and the graded q-Leibniz rule

$$
\begin{equation*}
d(\omega \tau)=d(\omega) \tau+q^{\operatorname{gr}(\omega)} \omega d(\tau) \tag{1}
\end{equation*}
$$

where ω, τ are arbitrary elements of the algebra; $\operatorname{gr}(\omega)$ is the grade of an element $\omega ; q$ is a primitive cubic root of unity.

In the paper [5], a q-differential calculus with $d^{3}=0$ is constructed on a classical smooth n-dimensional manifold. We construct the q differential calculus on an associative algebra generated by one variable

[^0]
[^0]: Received by the editors on December 14, 2000, and in revised form on July 2, 2001.

 This work was supported by Estonian Science Foundation grant No. 1134.

