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ALGEBRA OF DIFFERENTIAL FORMS WITH
EXTERIOR DIFFERENTIAL d3 = 0
IN DIMENSIONS ONE AND TWO

N. BAZUNOVA

ABSTRACT. In this paper, we construct the algebra of
differential forms with exterior differential satisfying d3 =
0 over an associative algebra with one and n generators
satisfying quadratic relations. Supposing d2 �= 0, we introduce
the second order differentials d2xi. We also assume that the
homomorphism defining a first order differential calculus is
linear in variables, and that there are no relations between the
terms (dxi)2 and d2xj . A graded q-differential algebra with
d3 = 0 is constructed by means of the Wess-Zumino method.
The commutation relations between generators xi, dxj , d2xk

of the algebra of differential forms in pairs and themselves
are found. In the case of the algebra with n generators, the
commutation relations between noncommutataive derivatives
∂i and generators d2xj also are found, and the consistency
conditions are described.

1. Introduction. An idea to generalize the classical exterior
differential calculus with d2 = 0 to the case dN = 0, N > 2, arises
in a recent series of papers [2 4, 6], where the different approaches to
this idea are developed, and these generalizations have been proposed
and studied. In the paper [5] such a generalization is provided by
the notion of graded q-differential algebra which is, according to the
definition given in [2], an associative unital N-graded algebra endowed
with a linear endomorphism d (q-differential) of degree 1 satisfying
dN = 0 and the graded q-Leibniz rule

(1) d(ωτ ) = d(ω)τ + qgr(ω)ω d(τ ),

where ω, τ are arbitrary elements of the algebra; gr(ω) is the grade of
an element ω; q is a primitive cubic root of unity.

In the paper [5], a q-differential calculus with d3 = 0 is constructed
on a classical smooth n-dimensional manifold. We construct the q-
differential calculus on an associative algebra generated by one variable
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