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FLUCTUATION OF SECTIONAL CURVATURE
FOR CLOSED HYPERSURFACES

MARIUS OVERHOLT

ABSTRACT. Liebmann proved in 1899 that the only closed
surfaces in Euclidean three-space that have constant Gauss
curvature are round spheres. Thus, if a closed surface in
three-space is not a topological sphere, its Gauss curvature
must fluctuate. We consider quantitative formulations of this
fact, also in higher dimensions.

0. Introduction. Consider a smooth closed manifold M of dimen-
sion n which has an immersion f : M → (Rn+1, can) as a hypersurface
in Euclidean space. The immersion pulls back the canonical Rieman-
nian metric on Rn+1 to a Riemannian metric on M , called the induced
metric, which we denote by f∗can. If M is not diffeomorphic to Sn,
the sectional curvature of f∗can must fluctuate. For if the sectional
curvature is constant, it must be positive. Then the shape operator
is everywhere definite, so the hypersurface is diffeomorphic to Sn by a
theorem of Hadamard.

We seek a lower bound for the amount of fluctuation of sectional cur-
vature, dependent on M , but independent of the particular immersion
f as far as possible. For any closed Riemannian manifold, the set of
values of the sectional curvature forms a closed bounded interval. The
task at hand is to give a lower bound for the length l(sec) of this in-
terval for the Riemannian metrics f∗can. Because of scaling, it is clear
that such a bound cannot depend on M alone, but must have some
dependence on the immersion f . It turns out that it is possible to give
a lower bound depending only on the topology of M and its volume
with respect to f∗can.

1. Fluctuation of sectional curvature. Let F be some fixed field,
and βj(M ;F ) = dimHj(M ;F ) the Betti numbers of M with respect
to the field F and β(M ;F ) their sum. Then l(sec) can be estimated
from below by vol (M) and β(M ;F ).

Received by the editors on October 2, 2000.

Copyright c©2002 Rocky Mountain Mathematics Consortium

385


