CONGRUENCES FOR THE COEFFICIENTS WITHIN A GENERALIZED FACTORIAL POLYNOMIAL

M.A. NYBLOM

1. Introduction. The Stirling numbers of first order, denoted by $s(n, k)$ can be defined for $n>0$ as the coefficient of x^{k} in the expansion of the rising factorial polynomial

$$
x(x+1) \cdots(x+n-1)=\sum_{k=1}^{n} s(n, k) x^{k}
$$

The many varied properties of this class of numbers have been extensively studied, see, for example, [2]. Yet, in spite of this, congruences for the Stirling numbers $s(n, k)$ are apparently not well known. A few congruences for prime moduli can be found in [2] and other texts, but it has only been in recent times that certain papers have appeared dealing specifically with the problem of Stirling number congruences (see [1], [3]). Of these papers, the one of most interest to us here is due to Howard, who found congruences $(\bmod p)$ for $s(n, k)$ and the associated Stirling numbers. We briefly list some of the main congruences as follows:
(3) $s(p-2, k) \equiv\left(2^{p-k-1}-1\right)(\bmod p) \quad$ for $0 \leq k \leq p-2$

$$
\begin{gather*}
s(h p+m, k) \equiv \sum_{i=0}^{h}\binom{h}{i}(-1)^{h-i} s(m, k-h-i(p-1))(\bmod p) \tag{4}\\
\text { for } 0 \leq m<p
\end{gather*}
$$

As an application of the above results, a complete examination of the congruences $(\bmod p)$ for $s(n, k)$, where $n \geq p$, was given in [3] for the special cases $p=2,3$ and 5 . In this paper we propose to extend

[^0]
[^0]: Received by the editors on August 31, 1999, and in revised form on May 3, 2000.

