THE HAUSDORFF DIMENSION OF THE NONDIFFERENTIABILITY SET OF A NONSYMMETRIC CANTOR FUNCTION

JERRY MORRIS

Abstract

Each choice of numbers a and c in the segment ($0,(1 / 2)$) produces a Cantor set $C_{a c}$ by recursively removing segments from the interior of the interval $[0,1]$ so that intervals of relative length a and c remain on the left and right sides of the removed segment, respectively. A Cantor function $\Phi_{a c}$ is obtained from $C_{a c}$ in much the same way that the standard Cantor function, Φ, is obtained from the Cantor ternary set. When $a=c=(1 / 3), C_{a c}$ is the Cantor ternary set, C, and $\Phi_{a c}$ is the standard Cantor function, Φ. The derivative of Φ is zero off C, and the upper derivative is infinite on C; the set $N=\{x \in C \mid$ the lower derivative of Φ is finite $\}$ has Hausdorff dimension $[\ln 2 / \ln 3]^{2}$. In this paper similar results are established for $N_{a c}$, the nondifferentiability set of $\Phi_{a c}$. The Hausdorff dimension of $N_{a c}$ is the maximum of the real numbers satisfying the following equations: $x(\ln (1 / c))^{2}=\ln ((a+c) / c) \ln \left((a / c)^{x}+1\right)$, and $x(\ln (1 / a))^{2}=$ $\ln ((a+c) / a) \ln \left((c / a)^{x}+1\right)$.

1. Introduction. For any numbers a and c satisfying $0<a, c<1$, we generate a Cantor set in [0, 1] by recursively removing open intervals of relative length $b=1-a-c$ so that closed intervals of relative length a and c remain to the left and right, respectively, of the removed interval:

$$
\begin{aligned}
& C_{a c}^{0}=[0,1] \\
& C_{a c}^{1}=[0, a] \cup[1-c, 1], \\
& C_{a c}^{2}=\left[0, a^{2}\right] \cup[a-a c, a] \cup[1-c, 1-c+a c] \cup\left[1-c^{2}, 1\right],
\end{aligned}
$$

etc., and $C_{a c}=\cap_{n \geq 1} C_{a c}^{n}$. We will refer to the set $C_{a c}^{n}$ as the nth stage in the construction of $C_{a c}$ and the 2^{n} closed intervals comprising $C_{a c}^{n}$ will be called stage n black intervals or nth stage black intervals. The closures of the open intervals removed at various stages in the construction of $C_{a c}$ will be called complementary intervals of the appropriate stage.

[^0]
[^0]: Received by the editors on December 13, 2000.

