ENUMERATIVE TRIANGLE GEOMETRY PART 1: THE PRIMARY SYSTEM, S

CLARK KIMBERLING

1. Introduction. This article presents a procedure for counting Euclidean constructible objects in triangle geometry-points and lines in Part 1, together with circles in Part 2. If A, B, C are the vertex angles of the reference triangle, then each object is a function $F(A, B, C)$, both as a construction and in the form of homogeneous coordinates. The counting procedure depends on the fact that objects occur in sets formally of size 6 :

$$
\begin{aligned}
& F(A, B, C), F(B, C, A), F(C, A, B) \\
& F(A, C, B), F(B, A, C), F(C, B, A)
\end{aligned}
$$

For homogeneous coordinates, we shall use trilinears. Basic lore on trilinears, presented in the references, is assumed.
2. Primary system, S. Let $S_{0}:=\{A, B, C\}$, where the object $A:=1: 0: 0$ may be interpreted as the point with trilinears $1: 0: 0$ or as the line with equation $u \alpha+v \beta+w \gamma=0$ having coefficients $u: v: w=1: 0: 0$, i.e., the line $B C$, which may be called the A-sideline just as the point having trilinears $1: 0: 0$ is the A-vertex.

Three operations, or opera (singular opus) will now be defined and eventually applied to objects in S_{0} and in succeeding generations of objects. Let $U=u: v: w$ and $X=x: y: z$.
(1) Opus 1: $\quad U \cdot X:= \begin{cases}U & \text { if } X=U \\ v z-w y: w x-u z: u y-v x & \text { if } X \neq U ;\end{cases}$
if U and X are interpreted as distinct points, then $U \cdot X$ is their line, and if U and X are interpreted as distinct lines, then $U \cdot X$ is their point of intersection.

$$
\text { Opus 2: } \begin{align*}
\quad U \| X:= & v(a y-b x)+w(a z-c x): w(b z-c y) \\
& +u(b x-a y): u(c x-a z)+v(c y-b z) \tag{2}
\end{align*}
$$

[^0]
[^0]: Received by the editors on August 25, 1999, and in revised form on August 28, 2000.

