BOCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 32, Number 1, Spring 2002

GROWTH AND COEFFICIENT ESTIMATES FOR UNIFORMLY LOCALLY UNIVALENT FUNCTIONS ON THE UNIT DISK

YONG CHANG KIM AND TOSHIYUKI SUGAWA

ABSTRACT. In this note we shall give a sharp distortion estimate for a uniformly locally univalent holomorphic function on the unit disk in terms of the norm of pre-Schwarzian derivative. As applications, we shall investigate the growth of coefficients and integral means of such a function and mention a connection with Hardy spaces. We also give norm estimates for typical classes of univalent functions.

1. Introduction. We will say that a holomorphic function f on the unit disk **D** is uniformly locally univalent if f is univalent on each hyperbolic disk $D(a, \rho) = \{z \in \mathbf{D}; |(z - a)/(1 - \bar{a}z)| < \tanh \rho\}$ with radius ρ and center $a \in \mathbf{D}$ for a positive constant ρ . In particular, a holomorphic universal covering map of a plane domain D is uniformly locally univalent if and only if the boundary of D is uniformly perfect, see [18] or [22]. Also it is well known, cf. [24], that a holomorphic function f on the unit disk is uniformly locally univalent if and only if the pre-Schwarzian derivative (or nonlinearity) $T_f = f''/f'$ of f is hyperbolically bounded, i.e., the norm

$$||T_f|| = \sup_{z \in \mathbf{D}} (1 - |z|^2) |T_f(z)|$$

is finite. This quantity can be regarded as the Bloch semi-norm of the function $\log f'$. We remark that a holomorphic function f is locally univalent at the point z if and only if $T_f = f''/f'$ is a welldefined holomorphic function near z. Roughly speaking, the quantity T_f measures the deviation of f from orientation-preserving similarities (nonconstant linear functions). In the following it is sometimes essential to consider the semi-norm

$$||T_f||_0 = \lim_{|z| \to 1-0} (1 - |z|^2) |T_f(z)| = 2 \lim_{|z| \to 1-0} (1 - |z|) |T_f(z)|$$

¹⁹⁹¹ Mathematics Subject Classification. Primary 30C45, 30C50, Secondary 30C80.

Key words and phrases. pre-Schwarzian derivative, uniformly locally univalent, growth estimate, coefficient estimate. Received by the editors on September 15, 2000.