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GROWTH AND COEFFICIENT ESTIMATES
FOR UNIFORMLY LOCALLY UNIVALENT

FUNCTIONS ON THE UNIT DISK

YONG CHANG KIM AND TOSHIYUKI SUGAWA

ABSTRACT. In this note we shall give a sharp distortion
estimate for a uniformly locally univalent holomorphic func-
tion on the unit disk in terms of the norm of pre-Schwarzian
derivative. As applications, we shall investigate the growth of
coefficients and integral means of such a function and mention
a connection with Hardy spaces. We also give norm estimates
for typical classes of univalent functions.

1. Introduction. We will say that a holomorphic function f on
the unit disk D is uniformly locally univalent if f is univalent on each
hyperbolic disk D(a, ρ) = {z ∈ D; |(z − a)/(1 − āz)| < tanh ρ} with
radius ρ and center a ∈ D for a positive constant ρ. In particular, a
holomorphic universal covering map of a plane domain D is uniformly
locally univalent if and only if the boundary of D is uniformly perfect,
see [18] or [22]. Also it is well known, cf. [24], that a holomorphic
function f on the unit disk is uniformly locally univalent if and only
if the pre-Schwarzian derivative (or nonlinearity) Tf = f ′′/f ′ of f is
hyperbolically bounded, i.e., the norm

‖Tf‖ = sup
z∈D

(1− |z|2)|Tf (z)|

is finite. This quantity can be regarded as the Bloch semi-norm of
the function log f ′. We remark that a holomorphic function f is
locally univalent at the point z if and only if Tf = f ′′/f ′ is a well-
defined holomorphic function near z. Roughly speaking, the quantity
Tf measures the deviation of f from orientation-preserving similarities
(nonconstant linear functions). In the following it is sometimes essential
to consider the semi-norm

‖Tf‖0 = lim
|z|→1−0

(1− |z|2)|Tf (z)| = 2 lim
|z|→1−0

(1− |z|)|Tf (z)|

1991 Mathematics Subject Classification. Primary 30C45, 30C50, Secondary
30C80.

Key words and phrases. pre-Schwarzian derivative, uniformly locally univalent,
growth estimate, coefficient estimate.

Received by the editors on September 15, 2000.

Copyright c©2002 Rocky Mountain Mathematics Consortium

179


