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ON THE SINGULARITIES AT INFINITY
OF PLANE ALGEBRAIC CURVES

JANUSZ GWOZDZIEWICZ AND ARKADIUSZ PLOSKI

ABSTRACT. We study polynomials in two complex vari-
ables with no critical points and with at most one irregular
value at infinity. We give some applications to polynomial
automorphisms.

Introduction. Let f : C2 — C be a polynomial of degree d > 1
with finite set of critical points, i.e., such that the partial derivatives
(0f/0X), (0f/IY) do not have common factors. Then the polynomials
f —t, t € C have no multiple factors.

Let C! be the projective closure of the fiber f=1(¢). If F(X,Y,Z) is
the homogeneous form corresponding to f = f(X,Y), then C* is given
by the equation F(X,Y,Z) —tZ% = 0. Let Lo, C P%(C) be the line
at infinity defined by Z = 0, and let C, = C* N L. Then the set
Cw is described by equations F(X,Y,0) = Z = 0 in P?(C). For every
point p € Cy,, we consider the Milnor number uf) = pp(C?), and we put
p™ = infiecpl. The set A(f) = {t € C: pl, >y for ap € Cuo}
is finite (see [6]). The elements of A(f) are called irregular values of
f. We put according to Broughton \'(f) = > o (1, — p™) and
M) = Yiec N()-

Equivalent definitions of irregular values are discussed in [10]. A
polynomial f : C2 — C is called a coordinate polynomial if there is
a polynomial g : C?> — C such that C[X,Y] = C|f,g]. The famous
Abhyankar-Moh theorem [2] can be stated as follows: an affine plane
curve is isomorphic to a line if and only if its minimal equation is a
coordinate polynomial. Using the Abhyankar-Moh theorem, Ephraim
proved [11] that a polynomial f : C2 — C is a coordinate polynomial
if and only if f has no critical points and A(f) = @.

In this note we study polynomials in two complex variables with no
critical points in C2. Our aim is to characterize polynomials with one
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