ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 30, Number 2, Summer 2000

JACOBIANS OF CURVES OVER FINITE FIELDS

JOSÉ FELIPE VOLOCH

Let C/\mathbf{F}_q be a curve over a finite field of genus g at least two. Assume C has a rational point P_0 and consider C embedded in its Jacobian J by sending P_0 to $0 \in J$. So $C(\mathbf{F}_q) \subset J(\mathbf{F}_q)$ and we can consider the subgroup G of $J(\mathbf{F}_q)$ generated by $C(\mathbf{F}_q)$. If G is not the whole of $J(\mathbf{F}_q)$, we will show that we can construct an étale cover of C where every \mathbf{F}_q -rational point of C splits completely into \mathbf{F}_q -rational points. We will prove that, if q is large enough compared to g, then $G = J(\mathbf{F}_q)$ and will give examples showing that this equality does not always hold and these examples will lead to curves over finite fields with many rational points.

Theorem. With the notation as above, if $q \ge (8g-2)^2$, then $G = J(\mathbf{F}_q)$.

Before proving the theorem, we need a lemma.

Lemma. Let A be an abelian group and α a surjective endomorphism of A. Let G be a subgroup of ker α and $\varphi : A \to A/G$ the canonical map and $\beta : A/G \to A/G$ the endomorphism induced by α . Finally, let $\psi : A/G \to A$ be the unique homomorphism such that $\alpha = \psi \circ \varphi$. Then $\psi(\ker \beta) = G$.

Proof. By construction, $\beta \circ \varphi = \varphi \circ \alpha$, that is, $\beta(y) = \varphi(\alpha(x))$ for any $x, \varphi(x) = y$. Also ψ is defined by $\psi(y) = \alpha(x)$ for any $x, \varphi(x) = y$, that is, $\alpha = \psi \circ \varphi$. We also have $\beta = \varphi \circ \psi$. Indeed, given $y \in A/G$ and $x, \varphi(x) = y$, we have $\beta(y) = \beta(\varphi(x)) = \varphi(\alpha(x)) = \varphi(\psi(y))$. It follows that $\psi(\ker \beta) \subset \ker \varphi = G$. On the other hand, given $x \in \ker \varphi$, we can write $x = \alpha(y), y \in A$. Then $\beta(\varphi(y)) = \varphi(\alpha(y)) = \varphi(x) = 0$, so $\varphi(y) \in \ker \beta$ and therefore $x = \psi(\varphi(y)) \in \psi(\ker \beta)$, which proves that $G \subset \psi(\ker \beta)$, proving the lemma. \Box

Received by the editors on March 24, 1999.

Copyright ©2000 Rocky Mountain Mathematics Consortium