ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 30, Number 2, Summer 2000

THE DE LA VALLÉE POUSSIN THEOREM FOR VECTOR VALUED MEASURE SPACES

MARÍA J. RIVERA

ABSTRACT. The purpose of this paper is to extend the de la Vallée Poussin theorem to $\operatorname{cabv}(\mu, X)$, the space of measures defined in Σ with values in the Banach space X which are countably additive, of bounded variation and μ -continuous, endowed with the variation norm.

1. Introduction. The celebrated theorem of de la Vallée Poussin, VPT in brief, characterizes the Lebesgue uniform integrability in the following way.

Let \mathcal{F} be a family of scalar measurable functions on a finite measure space (Ω, Σ, μ) . Then the following are equivalents.

(i) $\sup_{f \in \mathcal{F}} \int_{\Omega} |f| d\mu < \infty$ and \mathcal{F} is uniformly integrable, i.e., the set $\{\int_{E} |f| d\mu, f \in \mathcal{F}\}$ converges uniformly to zero in A if $\mu(E) \to 0$.

(ii) If $E_{nf} = \{\omega \in \Omega : |f(\omega)| > n\}$, then $\lim_{n \to \infty} \int_{E_{nf}} |f| d\mu = 0$, uniformly in \mathcal{F} .

(iii) There is a Young function Φ with the property that $\Phi(x)/x$ is an increasing function: $\lim_{x\to\infty} (\Phi(x)/x) = \infty$, and there is a constant $0 < C < \infty$ such that $\sup_{f \in \mathcal{F}} \int_{\Omega} \Phi(|f|) d\mu = C$.

The theorem of Dunford states that the uniform integrability of a subset K of $L_1(\mu)$ is equivalent to the relative weak compactness of K, and in [1, subsection 2.1] Alexopoulos gives more information on the structure of K in the corresponding Orlicz space $L_{\Phi}(\mu)$. The uniform integrability also is essential in the study of the relative weak compactness in $L_1(\mu, X)$, in fact every conditionally weakly compact subset of $L_1(\mu, X)$ is uniformly integrable, [3, Theorem IV]. The purpose of this paper is to extend the VPT to $\operatorname{cabv}(\mu, X)$. This result allows us to characterize, in terms of the Orlicz theory, a condition in $\operatorname{cabv}(\mu, X)$ which plays the role of the uniform integrability in $L_1(\mu, X)$.

Received by the editors on November 28, 1997, and in revised form on February 10, 1999.

Research partially supported by DGESIC, project PB97-0333.