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TWO-POINT DISTORTION THEOREMS FOR
SPHERICALLY CONVEX FUNCTIONS
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ABSTRACT. One-parameter families of sharp two-point
distortion theorems are established for spherically convex
functions f , that is, meromorphic univalent functions f de-
fined on the unit disk D such that f(D) is a spherically con-
vex subset of the Riemann sphere P. These theorems pro-
vide for a, b ∈ D sharp lower bounds on dP(f(a), f(b)), the
spherical distance between f(a) and f(b), in terms of dD(a, b),
the hyperbolic distance between a and b, and the quantities
(1 − |a|2)f �(a), (1 − |b|2)f �(b), where f � = |f ′|/(1 + |f |2) is
the spherical derivative. The weakest lower bound obtained is
an invariant form of a known growth theorem for spherically
convex functions. Each of the two-point distortion theorems
is necessary and sufficient for spherical convexity. These two-
point distortion theorems are equivalent to sharp two-point
comparison theorems between hyperbolic and spherical geom-
etry on a spherically convex region Ω on P. Each of these
two-point comparison theorems characterize spherically con-
vex regions.

1. Introduction. We begin by surveying the relatively brief history
of two-point distortion theorems for univalent functions in order to set
the stage for our work. The classical theory of univalent functions
often deals with the family S of normalized (g(0) = 0, g′(0) = 1)
univalent functions g defined on the unit disk D = {z : |z| < 1}.
Sharp growth and distortion theorems for functions in S are well-
known; these results are necessary but not sufficient for univalence.
In 1978 Blatter [1] established a sharp two-point distortion theorem
for non-normalized univalent functions f defined on D which is also
sufficient for univalence. Blatter’s result gives a sharp lower bound on
the Euclidean distance |f(a)−f(b)| in terms of d

D
(a, b), the hyperbolic

distance between a and b relative to D, and the quantities (1 −
|a|2)|f ′(a)|, (1 − |b|2)|f ′(b)|. Later, Kim and Minda [4] extended the
method of Blatter and obtained a one-parameter family of sharp two-
point distortion theorems that were both necessary and sufficient for
univalence. An invariant version of the classical growth theorem for
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