STABILITY OF DIFFEOMORPHISMS ALONG ONE PARAMETER

MING-CHIA LI

ABSTRACT. The structural stability theorem, proved by Robbin [6] and Robinson [7], says that for an Axiom A diffeomorphism f with the strong transversality condition, there exists a sufficiently small neighborhood U of f in the set of C^1 diffeomorphisms such that if $g \in U$ then there is a homeomorphism h near the identity map such that f is conjugate to g, i.e., hf = gh.

In this paper we further investigate the size of the neighborhood U and the distance of the homeomorphism h with the identity map. We show that if $\{f_\varepsilon\}$ is a one-parameter family of C^3 diffeomorphisms, f_0 satisfies Axiom A and the strong transversality condition, and f_ε is C^0 $O(\varepsilon^3)$ -close and C^1 $O(\varepsilon^2)$ -close to f_0 , then for all small $|\varepsilon|$, there is a homeomorphism h_ε with C^0 $O(\varepsilon^2)$ near the identity map, such that $h_\varepsilon f_0 = f_\varepsilon h_\varepsilon$.

1. Definitions and the main theorem. First of all, we introduce notations and basic definitions.

Throughout this paper, let M denote a smooth compact manifold with a distance d induced from the Riemannian metric, d_{C^0} denote a distance in the set of continuous maps on M with the standard C^0 -topology, and d_{C^1} denote a distance in the set of C^1 diffeomorphisms on M with the strong C^1 -topology. For r = 0 or $1, p \in \mathbb{N}$, we say that f is C^r $O(\varepsilon^p)$ to g if the ratio $|d_{C^r}(f,g)/\varepsilon^p|$ is bounded as $\varepsilon \to 0$.

A compact invariant set Λ for a diffeomorphism f on M has a hyperbolic structure if $TM|_{\Lambda}$, the restriction of the tangent bundle TM of M to Λ has two subbundles \mathbf{E}^s and \mathbf{E}^u such that $TM|_{\Lambda} = (\mathbf{E}^s \oplus \mathbf{E}^u)|_{\Lambda}$ where \oplus is the Whitney sum of two subbundles, and if there exist C > 0 and $0 < \mu < 1$ such that, for any $x \in M$ and for all

Received by the editors on November 4, 1998. This research was partially supported by the National Science Council of the Republic of China.