THE SPECTRAL GEOMETRY OF RIEMANNIAN SUBMERSIONS FOR MANIFOLDS WITH BOUNDARY

JEONG HYEONG PARK

Abstract

We study the spectral geometry of a Riemannian submersion $\pi: Z \rightarrow Y$ where Z and Y are compact Riemannian manifolds with smooth boundaries and where $\pi: \partial Z \rightarrow \partial Y$ is also a Riemannian submersion. We impose suitable boundary conditions and give necessary and sufficient conditions that π^{*} preserve all the eigenforms of the Laplacian. We also study when a single eigenvalue can change.

0. Introduction. All manifolds in this note are assumed to be compact, connected, orientable, smooth Riemannian manifolds with smooth boundaries. Let $\Delta_{M}^{p}:=\delta_{M} d_{M}+d_{M} \delta_{M}$ be the Laplace Beltrami operator on the space of smooth p forms $C^{\infty} \Lambda^{p} M$ on such a manifold M. We must impose suitable boundary conditions \mathcal{B} if ∂M is nonempty. Section 1 is devoted to a brief review of Dirichlet, Neumann, absolute and relative boundary conditions; these are the boundary conditions that we will consider. Let $\Delta_{M, \mathcal{B}}^{p}$ be the Laplacian on M with domain defined by the boundary condition \mathcal{B}. Denote the corresponding eigenspaces by

$$
E\left(\lambda, \Delta_{M, \mathcal{B}}^{p}\right):=\left\{\Phi \in C^{\infty}\left(\Lambda^{p} M\right): \Delta_{M}^{p} \Phi=\lambda \Phi \text { and } \mathcal{B} \Phi=0\right\}
$$

In Lemma 1.2 we show $\Delta_{M, \mathcal{B}}^{p}$ is self-adjoint. If \mathcal{B} denotes Dirichlet, relative, or absolute boundary conditions, $\Delta_{M, \mathcal{B}}^{p}$ is a nonnegative operator. By contrast, if \mathcal{B} denotes Neumann boundary conditions, then $\Delta_{M, \mathcal{B}}^{p}$ can have negative spectrum as we shall show in Theorem 4.4. The material of Section 1 is fairly well known; we have organized it for the convenience of the reader in later sections.

[^0]
[^0]: Received by the editors on August 15, 1997, and in revised form on September 15, 1998.

 1991 AMS Mathematics Subject Classification. Primary 58G25.
 Key words and phrases. Dirichlet boundary conditions, Neumann boundary conditions, relative boundary conditions, absolute boundary conditions, Riemannian submersion, form valued Laplacian.

 Research partially supported by KOSEF 971-0104-016-2 and BSRI 97-1425, the Korean Ministry of Education.

