A COMBINATORIAL IDENTITY OF SUBSET-SUM POWERS IN RINGS

ROY MALTBY

Abstract

Escott showed that, for any set of n natural numbers, the sum of the k th powers of the sums of subsets of even cardinality is equal to the sum of the k th powers of the sums of subsets of odd cardinality for $k=1, \ldots, n-1$. We present a new proof of this fact which shows that this result holds in noncommutative rings as well.

The main application of Theorem 1 is to the Prouhet-Tarry-Escott problem, which is to determine, for each $d \in \mathbf{N}$, the least m such that there exist $\left(a_{1}, \ldots, a_{m}\right) \in \mathbf{N}^{m}$ and $\left(b_{1}, \ldots, b_{m}\right) \in \mathbf{N}^{m}$ not permutations of each other so that $\sum_{i=1}^{m} a_{i}^{k}=\sum_{i=1}^{m} b_{i}^{k}$ for all $k \leq d$. (We use \mathbf{N} to denote the set of natural numbers, and for every $n \in \mathbf{N}$ we use \mathbf{n} to denote the set $\{1, \ldots, n\}$.) In $[\mathbf{3}]$, this author describes in detail one method of applying Theorem 1 to the Prouhet-TarryEscott problem. For a thorough discussion of the Prouhet-Tarry-Escott problem, see Borwein and Ingall's recent paper [1].

Dorwart and Brown [2, p. 624] attribute Theorem 1 to Escott. Here we give a fuller presentation of the old proof sketched by Borwein and Ingalls following their Proposition 1 in [1]. This proof has similarities to the one presented by Wright [4]. This proof shows that the theorem holds for natural numbers, and we follow it with a proof that the identity holds in noncommutative rings as well.

Theorem 1. For any $n \in \mathbf{N}$ and $\alpha_{1}, \ldots, \alpha_{n} \in \mathbf{N}$,

$$
\sum_{\substack{I \subseteq \mathbf{n} \\|I| \text { odd }}}\left(\sum_{i \in I} \alpha_{i}\right)^{k}=\sum_{\substack{I \subseteq \mathbf{n} \\|I| \text { even }}}\left(\sum_{i \in I} \alpha_{i}\right)^{k}
$$

for all $k<n$.

[^0]
[^0]: Received by the editors on December 20, 1996.

