MIDDLE SEMICONTINUITY FOR UNBOUNDED OPERATORS

HYOUNGSOON KIM

Abstract

Let A be a C^{*}-algebra and K_{A} its Pedersen's ideal. By making use of Mack's characterization of PCSalgebra and Phillips' new description of multipliers of K_{A}, $[\mathbf{1 4}, \mathbf{1 8}]$, we generalize the concept of middle semicontinuity [6] to the case of unbounded operators affiliated with $A^{* *}$, the enveloping von Neumann algebra of A. Especially we obtain the unbounded version of a Dauns-Hofmann type theorem [15, Theorem 4.6] and a middle interpolation theorem [6, Theorem 3.40].

1. Introduction and preliminaries. Let A be a C^{*}-algebra and $A^{* *}$ its enveloping von Neumann algebra. The theory of semicontinuous operators in $A^{* *}$ was developed by Pedersen, Akemann and Brown [2, $\mathbf{6}, \mathbf{1 5}]$. This paper is a sequel to [12] which generalizes the theory of strong semicontinuity. We will adopt the same notations from it. In this paper the concept of middle semicontinuity is generalized for unbounded operators affiliated with $A^{* *}$.
Let $M(A)$ denote the multiplier algebra of A and K_{A} the Pedersen's ideal (minimal dense ideal) of A. If A is commutative, that is, $A=C_{0}(X)$, the algebra of all complex valued continuous functions which vanish at infinity on some locally compact space X, then $M(A)$, respectively K_{A}, can be identified with $C_{b}(X)$, respectively $C_{c}(X)$, the algebra of all complex value bounded, respectively compactly supported, continuous functions on X. As a noncommutative generalization of the relation between $C_{c}(X)$ and its multiplier algebra $C(X)$, Lazar and Taylor [13] introduced $\Gamma\left(K_{A}\right)$, the multipliers (double centralizers) of Pedersen's ideal K_{A} and made an extensive study of it.

In [18], Phillips gave a new description of $\Gamma\left(K_{A}\right)$ as an inverse limit of C^{*}-algebras (pro C^{*}-algebra) and derived a number of the results of [13] directly from corresponding facts about inverse limits of C^{*} algebras.

[^0]
[^0]: Received by the editors on May 3, 1997, and in revised form on September 22, 1998.

