BOCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 30, Number 1, Spring 2000

SMOOTH POINTS OF ESSENTIALLY BOUNDED VECTOR FUNCTION SPACES

MANUEL FERNÁNDEZ AND ISIDRO PALACIOS

ABSTRACT. We characterize the smooth points of $L_{\infty}(X)$, where X is any normed space.

1. Introduction. Let X be a normed space and $x, y \in X$. The one-sided derivatives at $x \neq 0$ in the direction $y \neq 0$ are

$$D_X^{\pm}(x,y) = \lim_{h \to 0^{\pm}} \frac{\|x + hy\| - \|x\|}{h}.$$

Both limits always exist and, if they have the same value, we write $D_X(x,y) = D_X^+(x,y) = D_X^-(x,y)$. It is easy to see that this is equivalent to saying: For every $\varepsilon > 0$ there exists $\delta > 0$ such that $0 < h < \delta$ implies $||x + hy|| + ||x - hy|| < 2||x|| + \varepsilon h.$

We say that $x \neq 0$ is *smooth*, if D(x, y) exists, for every $y \in S_X$, where S_X denotes the unit sphere of X, or equivalently, if there is a unique norm-one functional $x^* \in X^*$, the topological dual of X, such that $x^*(x) = ||x||$ [1, page 179]. Since $D_X(tx, y) = D_X(x, y)$ for t > 0, we can restrict our attention to the smooth points of S_X .

Deeb and Khalil [3] have characterized the smooth points of the Lebesgue-Bochner spaces $L_p(I, X)$, $1 \leq p < \infty$, when I has finite measure and X has a separable dual. Cerda, Hudzik and Mastylo [2]characterize the smooth points of the Köthe-Bochner space E(X), if X is real with separable dual, E is order continuous, and the norm of E^* is strictly monotonic. In this paper we characterize the smooth points of $L_{\infty}(X)$. In contrast to the $L_p(I, X), 1 \leq p < \infty$, it is worth noticing that the smoothness of $x \in L_{\infty}(X)$ does not imply the smoothness of $x(t) \in X$ for almost every $t \in T$.

Let (T, Σ, μ) be a complete, positive measure space and X a normed space. The function $x : T \to X$ is said to be *simple* if there

Received by the editors on October 15, 1997, and in revised form on September 30, 1998.

¹⁹⁹¹ AMS Mathematics Subject Classification. 46B20. Key words and phrases. Smooth points.