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SMOOTH POINTS OF ESSENTIALLY BOUNDED
VECTOR FUNCTION SPACES

MANUEL FERNÁNDEZ AND ISIDRO PALACIOS

ABSTRACT. We characterize the smooth points of L∞(X),
where X is any normed space.

1. Introduction. Let X be a normed space and x, y ∈ X. The
one-sided derivatives at x �= 0 in the direction y �= 0 are

D±
X(x, y) = lim

h→0±

‖x+ hy‖ − ‖x‖
h

.

Both limits always exist and, if they have the same value, we write
DX(x, y) = D+

X(x, y) = D−
X(x, y). It is easy to see that this is

equivalent to saying: For every ε > 0 there exists δ > 0 such that
0 < h < δ implies ‖x+ hy‖+ ‖x− hy‖ < 2‖x‖+ εh.

We say that x �= 0 is smooth, if D(x, y) exists, for every y ∈ SX ,
where SX denotes the unit sphere of X, or equivalently, if there is a
unique norm-one functional x∗ ∈ X∗, the topological dual of X, such
that x∗(x) = ‖x‖ [1, page 179]. Since DX(tx, y) = DX(x, y) for t > 0,
we can restrict our attention to the smooth points of SX .

Deeb and Khalil [3] have characterized the smooth points of the
Lebesgue-Bochner spaces Lp(I,X), 1 ≤ p < ∞, when I has finite
measure and X has a separable dual. Cerda, Hudzik and Mastylo [2]
characterize the smooth points of the Köthe-Bochner space E(X), if X
is real with separable dual, E is order continuous, and the norm of E∗

is strictly monotonic. In this paper we characterize the smooth points
of L∞(X). In contrast to the Lp(I,X), 1 ≤ p <∞, it is worth noticing
that the smoothness of x ∈ L∞(X) does not imply the smoothness of
x(t) ∈ X for almost every t ∈ T .
Let (T,Σ, µ) be a complete, positive measure space and X a normed

space. The function x : T → X is said to be simple if there
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