DIOPHANTINE TRIPLES AND CONSTRUCTION OF HIGH-RANK ELLIPTIC CURVES OVER Q WITH THREE NONTRIVIAL 2-TORSION POINTS

ANDREJ DUJELLA

1. Introduction. Let E be an elliptic curve over \mathbf{Q}. The famous theorem of Mordell-Weil states that

$$
E(\mathbf{Q}) \simeq E(\mathbf{Q})_{\mathrm{tors}} \times \mathbf{Z}^{r}
$$

and by a theorem of Mazur [15] we know that only possible torsion groups over \mathbf{Q} are

$$
E(\mathbf{Q})_{\text {tors }}= \begin{cases}\mathbf{Z} / m \mathbf{Z} & m=1,2, \ldots, 10 \text { or } 12 \\ \mathbf{Z} / 2 \mathbf{Z} \times \mathbf{Z} / 2 m \mathbf{Z} & m=1,2,3,4\end{cases}
$$

Let

$$
\begin{aligned}
B(F) & =\sup \left\{\operatorname{rank}(E): E \text { curve over } \mathbf{Q} \text { with } E(\mathbf{Q})_{\text {tors }} \simeq F\right\} \\
B_{r}(F) & =\limsup \left\{\operatorname{rank}(E): E \text { curve over } \mathbf{Q} \text { with } E(\mathbf{Q})_{\text {tors }} \simeq F\right\} .
\end{aligned}
$$

An open question is whether $B(F)<\infty$.
The examples of Martin-McMillen and Fermigier [8] show that $B(0) \geq 23$ and $B(\mathbf{Z} / 2 \mathbf{Z}) \geq 14$. It follows from results of Montgomery [18] and Atkin-Morain [1] that $B_{r}(F) \geq 1$ for all torsion groups F. Kihara [11] proved that $B_{r}(0) \geq 14$ and Fermigier [8] that $B_{r}(\mathbf{Z} / 2 \mathbf{Z}) \geq 8$. Recently, Kihara [12] and Kulesz [14] proved using parametrization by $\mathbf{Q}(t)$ and $\mathbf{Q}\left(t_{1}, t_{2}, t_{3}, t_{4}\right)$ that $B_{r}(\mathbf{Z} / 2 \mathbf{Z} \times \mathbf{Z} / 2 \mathbf{Z}) \geq 4$ and Kihara [13] proved using parametrization by rational points of an elliptic curve that $B_{r}(\mathbf{Z} / 2 \mathbf{Z} \times \mathbf{Z} / 2 \mathbf{Z}) \geq 5$. Kulesz also proved that $B_{r}(\mathbf{Z} / 3 \mathbf{Z}) \geq 6, B_{r}(\mathbf{Z} / 4 \mathbf{Z}) \geq 3, B_{r}(\mathbf{Z} / 5 \mathbf{Z}) \geq 2, B_{r}(\mathbf{Z} / 6 \mathbf{Z}) \geq 2$ and $B_{r}(\mathbf{Z} / 2 \mathbf{Z} \times \mathbf{Z} / 4 \mathbf{Z}) \geq 2$. The methods used in $[\mathbf{1 2}]$ and $[\mathbf{1 4}]$ are similar to the method of Mestre $[\mathbf{1 6}, \mathbf{1 7}]$.

In the present paper we prove that $B_{r}(\mathbf{Z} / 2 \mathbf{Z} \times \mathbf{Z} / 2 \mathbf{Z}) \geq 4$ by a different method. Namely, we use the theory of, so called, Diophantine

[^0]
[^0]: Received by the editors on June 12, 1998, and in revised form on November 16, 1998.

