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AN EXPLICIT ZERO-FREE REGION
FOR THE RIEMANN ZETA-FUNCTION

YUANYOU CHENG

ABSTRACT. This paper gives an explicit zero-free region
for the Riemann zeta-function derived from the Vinogradov-
Korobov method. We prove that the Riemann zeta-function

does not vanish in the region σ ≥ 1 − .00105 log−2/3 |t|
(log log |t|)−1/3 and |t| ≥ 3.

1. Introduction. It is now well known that the problem involving
prime numbers can be related to the study of the Riemann zeta-
function. In 1860, Riemann in [17] showed that the key to the deeper
investigation of the distribution of the primes lies in the study of the
function which is now called the Riemann zeta-function. Let s = σ+ it
be a complex variable. For σ > 1, the Riemann zeta-function is defined
as

(1) ζ(s) =
∞∑

n=1

1
ns

.

The above series converges absolutely and uniformly on the half plane
σ ≥ σ0 for any σ0 > 1. It can be extended to be a regular function
on the whole complex plane C, except at s = 1, which is the only pole
of the Riemann zeta-function and at which the function has residue 1.
The general definition of the Riemann zeta-function may be referred to
by its functional equation. That is,

(2) π−s/2Γ(s/2)ζ(s) = π−(1−s)/2Γ((1 − s)/2)ζ(1 − s).

Here Γ is the factorial function of a complex variable and Γ(n) = (n−1)!
for every positive integer n. The pole of Γ at s = 0 corresponds to that
of ζ(s) at s = 1. The other poles of Γ at s = −n for positive integers
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