BOCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 30, Number 1, Spring 2000

AN EXPLICIT ZERO-FREE REGION FOR THE RIEMANN ZETA-FUNCTION

YUANYOU CHENG

ABSTRACT. This paper gives an explicit zero-free region for the Riemann zeta-function derived from the Vinogradov-Korobov method. We prove that the Riemann zeta-function does not vanish in the region $\sigma \ \geq \ 1 \, - \, .00105 \log^{-2/3} |t|$ $(\log \log |t|)^{-1/3}$ and $|t| \ge 3$.

1. Introduction. It is now well known that the problem involving prime numbers can be related to the study of the Riemann zetafunction. In 1860, Riemann in [17] showed that the key to the deeper investigation of the distribution of the primes lies in the study of the function which is now called the Riemann zeta-function. Let $s = \sigma + it$ be a complex variable. For $\sigma > 1$, the Riemann zeta-function is defined as

(1)
$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}.$$

The above series converges absolutely and uniformly on the half plane $\sigma \geq \sigma_0$ for any $\sigma_0 > 1$. It can be extended to be a regular function on the whole complex plane \mathbf{C} , except at s = 1, which is the only pole of the Riemann zeta-function and at which the function has residue 1. The general definition of the Riemann zeta-function may be referred to by its functional equation. That is,

(2)
$$\pi^{-s/2}\Gamma(s/2)\zeta(s) = \pi^{-(1-s)/2}\Gamma((1-s)/2)\zeta(1-s)$$

Here Γ is the factorial function of a complex variable and $\Gamma(n) = (n-1)!$ for every positive integer n. The pole of Γ at s = 0 corresponds to that of $\zeta(s)$ at s = 1. The other poles of Γ at s = -n for positive integers

Received by the editors on June 26, 1998, and in revised form on September 25, 1998.

¹⁹⁹¹ AMS Mathematics Subject Classification. 11E01. Key words and phrases. Riemann zeta-function, zero-free region, Vinogradov-Korobov method, explicit.

Copyright ©2000 Rocky Mountain Mathematics Consortium