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LOCALNESS OF THE CENTRALIZER NEARRING
DETERMINED BY End G

G. ALAN CANNON

ABSTRACT. For G a finite p-group, we investigate the
localness of the nearring ME(G) = {f : G → G | fσ = σf for
every σ ∈ End G}. Examples of groups which make ME(G)
local are provided.

1. Introduction. Let G be a group written additively but not
necessarily abelian, and let S be a subsemigroup of EndG. The set
MS(G) = {f : G → G | fσ = σf for every σ ∈ S} forms a nearring
under pointwise addition and function composition and is called the
centralizer nearring determined by S and G. These nearrings are very
general since every nearring with identity is isomorphic to an MS(G)
for some pair S and G [5, 14.3]. Therefore, it is difficult to investigate
these nearrings without some restriction on eitherG or S. In particular,
much attention has been focused on the case where S is a group of
automorphisms of G (e.g., see [6] or [9]).

If S consists of only the identity function on G, thenMS(G) =M(G),
the set of all functions from G to G. Similarly, if S consists of only
the zero function on G, then MS(G) = M0(G), the set of all zero-
preserving functions from G to G. The structure of these nearrings is
well known (see [5, 11] or [12] for information and for other general
results about nearrings). In this paper which contains results from the
author’s doctoral dissertation [2], we are interested in the structure of
the other extreme situation, in other words, when S = EndG = E. We
callME(G) the centralizer nearring determined by EndG. Since EndG
contains the zero function, ME(G) will be a zero-symmetric nearring.

We recall that a nearringN is local if the set of nonunits inN forms an
additive subgroup. If N is finite, this condition is equivalent to saying
that every element of N is either invertible or nilpotent [10]. This
provides further motivation for studying ME(G), for if G is finite and
ME(G) is not local, then MS(G) cannot be local for any subsemigroup
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