ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 30, Number 1, Spring 2000

DUALITY OF THE BERGMAN SPACES ON SOME WEAKLY PSEUDOCONVEX DOMAINS

KEVIN BURKE

1. Introduction and statement of results. Let *D* be a smoothly bounded pseudoconvex domain of finite type in \mathbb{C}^2 , i.e., every onedimensional complex submanifold of \mathbf{C}^2 which is tangent to the boundary bD has finite order of contact with bD. There are many equivalent formulations of finite type. For a more complete description the reader is referred to the survey article by D'Angelo [6] and the references therein.

For $1 \leq p < \infty$ and dV Lebesgue measure we consider the closed subspace $\mathcal{O}L^p(D)$ of $L^p(D, dV)$ consisting of holomorphic functions. These spaces are commonly referred to as the Bergman spaces. $\mathcal{O}L^p(D)$ is a Banach space with norm $||f||_p^p = \int_D |f(z)|^p dV(z)$. As usual, if X is a Banach space, we denote its dual by X^* . X^* is also a Banach space with norm $\|\cdot\|^*$. In this paper we prove the following

Theorem A. For $1 , the dual of <math>\mathcal{O}L^p(D)$ can be identified with $\mathcal{O}L^q(D)$ where (1/p) + (1/q) = 1. More precisely,

(1) If $g \in \mathcal{O}L^q(D)$, then g induces a bounded linear functional on $\mathcal{O}L^p(D)$ via the integral pairing

(1.1)
$$\Phi(f) = \int_D f(z)\overline{g(z)} \, dV(z), \quad f \in \mathcal{O}L^p(D).$$

(2) If $\Phi \in \mathcal{O}L^p(D)^*$, then there is a $g \in \mathcal{O}L^q(D)$ such that Φ is of the form (1.1). Moreover, the norms $\|g\|_p$ and $\|\Phi\|^*$ are equivalent.

Fix a defining function r(z) for D. We denote by ∇_r the complex normal derivative $\nabla_r = \sum_{j=1}^{2} (\partial r / \partial \bar{z}_j) (\partial / \partial z_j)$. The Bloch space $\mathcal{B}(D)$ is the set of functions holomorphic on D satisfying $||f||_{\mathcal{B}} =$ $\sup\{|r(z)\nabla_r f(z)|: z \in D\} < \infty$. We also prove the following

Received by the editors on September 1, 1997. 1991 AMS Mathematics Subject Classification. Primary 32A37, Secondary 32H10, 46E15.

Copyright ©2000 Rocky Mountain Mathematics Consortium