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A WALLMAN-SHANIN-TYPE
COMPACTIFICATION FOR APPROACH SPACES

R. LOWEN AND M. SIOEN

ABSTRACT. In [11] a C̆ech-Stone-type compactification
theory was developed for UAP2. In this paper we construct
a Wallman-Shanin-type compactification theory for weakly
symmetric T1 approach spaces which form a full subcategory
of AP properly containing UAP2. For a weakly symmetric
T1 approach space, we also investigate the relation between
the topological bicoreflection of its Wallman-type compactifi-
cation and the classical Wallman compactification of its topo-
logical bicoreflection, and we show that our theory extends
the classical topological Wallman compactification theory. It

is shown in [14] that our present theory also extends the C̆ech-
Stone-type theory from [11].

1. Introduction. In the ‘classical’ study of extensions of topological
spaces, a significant role is played by compactification theories, in
particular, by the Wallman-Shanin compactification theory since it
applies to all T1 topological spaces. This approach, based on the use
of so-called closed ultrafilters, was put forward by Wallman in his 1938
paper [16], where he defined his ‘ultrafilter space’ in the setting of
distributive lattices and then applied the result to the lattice of all
closed sets of a T1 topological space, obtaining the so-called Wallman
compactification, which for normal spaces yields the well-studied C̆ech-
Stone compactification. His ideas were subsequently generalized by
Banaschewski [2] who defined what he called a “Wallman basis” to
construct Hausdorff compactifications of Tychonoff topological spaces.
See also Frink [4], who used what he called ‘normal basis’ to end up
with Hausdorff compactifications for Tychonoff topological spaces, and
by Steiner [15], using the concept of a ‘separating base’ to create more
general T1 compactifications for T1 spaces. This last line of work is
also followed in [12] and we refer hereto for more details, since we
will restrict ourselves to listing basic definitions and facts concerning
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