ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 30, Number 4, Winter 2000

NORMALITY OF COMPLEX CONTACT MANIFOLDS

BELGIN KORKMAZ

ABSTRACT. Complex contact metric manifolds are studied. Normality is defined for these manifolds and equivalent conditions are given in terms of ∇G and ∇H . *GH*-sectional curvature and \mathcal{H} -homothetic deformations are defined. Examples of normal complex contact metric manifolds with constant *GH*-sectional curvature c are given for $c \geq -3$.

1. Introduction. The theory of complex contact manifolds started with the papers of Kobayashi [12] and Boothby [4], [5] in late 1950's and early 1960's, shortly after the celebrated Boothby-Wang fibration in real contact geometry [6]. It did not receive as much attention as the theory of real contact geometry. In 1965, Wolf studied homogeneous complex contact manifolds [17]. Recently, more examples are appearing in the literature, especially twistor spaces over quaternionic Kähler manifolds (e.g., [13], [14], [15], [16], [18]). Other examples include the odd dimensional complex projective spaces [9] and the complex Heisenberg group [1].

In the 1970's and early 1980's there was a development of the Riemannian theory of complex contact manifolds by Ishihara and Konishi [8], [9], [10]. However, their notion of normality as it appears in [9] seems too strong since it does not include the complex Heisenberg group and it forces the structure to be Kähler. In this paper we introduce a slightly different notion of normality which includes the complex Heisenberg group.

In Section 2 we give the necessary definitions and some basic facts about complex contact metric manifolds. In Section 3 we define normality and give the theorem which states the necessary and sufficient conditions, in terms of the covariant derivatives of the structure tensors, for a complex contact metric manifold to be normal. We discuss some curvature properties of normal complex contact metric manifolds in Section 4.

Received by the editors on August 10, 1998.

Copyright ©2000 Rocky Mountain Mathematics Consortium