## SECOND-ORDER DIFFERENTIAL OPERATORS WITH INTEGRAL BOUNDARY CONDITIONS AND GENERATION OF ANALYTIC SEMIGROUPS

JOSÉ M. GALLARDO

ABSTRACT. Consider a second-order differential operator  $Lu=u''+q_1(x)u'+q_0(x)u$  with integral boundary conditions of the form

$$\int_a^b R_i(t) u(t) \, dt + \int_a^b S_i(t) u'(t) \, dt = 0, \quad i = 1, 2.$$

We study sufficient conditions on the functions  $R_i$  and  $S_i$ , i = 1, 2, such that the operator L is the generator of an analytic semigroup of operators on  $L^p(a,b)$ . The generation of analytic semigroups is proved by showing the estimate

$$||R(\lambda:L)|| \le \frac{M}{|\lambda|}$$

for the resolvent operator in a suitable sector of the complex plane. The motivation for this work is to generalize the results in [3], where nonseparated boundary conditions were considered.

1. Introduction. We consider a second-order differential operator of the form

$$(1.1) l(u) = u'' + q_1(x)u' + q_0(x)u, \quad x \in (a, b),$$

where each  $q_i(x)$  is a regular function with complex values. We can associate to l(u) a variety of boundary conditions, in particular, the nonseparated ones:

(1.2) 
$$\begin{cases} a_1 u(a) + b_1 u'(a) + c_1 u(b) + d_1 u'(b) = 0, \\ a_2 u(a) + b_2 u'(a) + c_2 u(b) + d_2 u'(b) = 0. \end{cases}$$

Received by the editors on July 17, 1999, and in revised form on December 1, 1999.

Copyright ©2000 Rocky Mountain Mathematics Consortium