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NORM CONVERGENCE OF MOVING
AVERAGES FOR τ -INTEGRABLE OPERATORS

DOĞAN ÇÖMEZ AND SEMYON LITVINOV

ABSTRACT. It is shown that if α is a positive linear map on
L1(M, τ) of a von Neumann algebra M with a faithful normal
(semi-)finite trace τ which is norm-reducing for both the
operator norm and the integral norm associated with τ , then
the moving averages converge in Lp-norm, 1 ≤ p < ∞. Using
this result it has been shown that similar norm convergence
results hold for some super-additive processes in Lp(M, τ)
relative to τ -preserving α.

1. Introduction. This article concerns some strong convergence
results for moving averages in the von Neumann algebra setting. Be-
ginning with the celebrated theorem of Lance and Yeadon, there has
been great interest in extending various results in classical ergodic the-
ory into operator algebras, particularly to von Neumann algebras. For
a review, see [6], [8]. Recently, such activities have been revived in the
context of obtaining various weighted ergodic theorems in von Neu-
mann algebras [7], [9], [10]. Study of convergence of moving averages
in von Neumann algebra settings is new. Actually we will obtain norm
convergence of moving averages for both additive and superadditive
processes in a von Neumann algebra.

Let M be a von Neumann algebra with the unit I, and let τ be
a faithful normal semi-finite trace on M . For the definition of Lp-
spaces, 1 ≤ p ≤ ∞, associated with (M, τ ), see [14], [12], [15], [4].
Lp = Lp(M, τ ), being noncommutative generalizations of the classical
Lp-spaces, inherit most of their important properties. For example, the
following form of the Hölder inequality holds [4]

‖xy‖r ≤ ‖x‖p‖y‖q

whenever p, q, r > 0 and p−1 +q−1 = r−1. When τ is finite, this implies
that if p > q then Lp ⊂ Lq.
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