PERTURBATION OF FRAMES FOR A SUBSPACE OF A HILBERT SPACE

OLE CHRISTENSEN, CHRIS LENNARD AND CHRISTINE LEWIS

Abstract

A frame sequence $\left\{f_{i}\right\}_{i=1}^{\infty}$ in a Hilbert space \mathcal{H} allows every element in the closed linear span, $\left[f_{i}\right]$, to be written as an infinite linear combination of the frame elements f_{i}. Thus a frame sequence can be considered to be some kind of "generalized basis." Using an extension of a classical condition, we prove that a perturbation $\left\{g_{i}\right\}_{i=1}^{\infty}$ of a frame sequence $\left\{f_{i}\right\}_{i=1}^{\infty}$ is again a frame sequence whenever the gap from $\left[g_{i}\right]$ to $\left[f_{i}\right]$ is small enough. In the special case of a Riesz sequence $\left\{f_{i}\right\}_{i=1}^{\infty}$ the gap condition may be omitted.

1. Introduction. A frame sequence $\left\{f_{i}\right\}_{i=1}^{\infty}$ in a Hilbert space \mathcal{H} has the property that every element in $\left[f_{i}\right]:=\overline{\operatorname{span}}\left\{f_{i}\right\}_{i=1}^{\infty}$ has a representation as an infinite linear combination of the frame elements f_{i}. In contrast with the situation for a basis, the corresponding coefficients are not necessarily unique, which makes frame sequences a very useful tool when more freedom is required. A frame sequence is thus a very natural generalization of the concept of a Riesz sequence (i.e., a sequence that is a Riesz basis for its closed linear span).

Our goal is to prove some perturbation results for frame sequences. To motivate the following, remember that if $\left\{f_{i}\right\}_{i=1}^{\infty}$ is a Riesz sequence, then $\left\{g_{i}\right\}_{i=1}^{\infty} \subseteq \mathcal{H}$ is a Riesz sequence whenever

$$
\begin{equation*}
\left\|\sum_{i=1}^{\infty} c_{i}\left(f_{i}-g_{i}\right)\right\| \leq \mu\left(\sum_{i=1}^{\infty}\left|c_{i}\right|^{2}\right)^{1 / 2}, \quad \forall\left\{c_{i}\right\}_{i=1}^{\infty} \in l^{2}(N), \tag{1}
\end{equation*}
$$

for a sufficiently small constant μ. We prove the same conclusion holds under a weaker condition than (1).

The direct analogue of this last Riesz sequence result for a frame sequence $\left\{f_{i}\right\}_{i=1}^{\infty}$ does not hold unless $\left[f_{i}\right]$ is the whole Hilbert space. This leads us to consider the notion of the gap from one subspace of

[^0]
[^0]: Received by the editors on February 25, 1999.
 1991 AMS Mathematics Subject Classification. 42C15.
 Key words and phrases. Frames, perturbation of frames.

