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PERTURBATION OF FRAMES FOR
A SUBSPACE OF A HILBERT SPACE

OLE CHRISTENSEN, CHRIS LENNARD AND CHRISTINE LEWIS

ABSTRACT. A frame sequence {f;}3°, in a Hilbert space
‘H allows every element in the closed linear span, [f;], to be
written as an infinite linear combination of the frame elements
fi. Thus a frame sequence can be considered to be some
kind of “generalized basis.” Using an extension of a classical
condition, we prove that a perturbation {g;}5°, of a frame
sequence { f;}9°, is again a frame sequence whenever the gap
from [g;] to [f;] is small enough. In the special case of a Riesz
sequence {f;}2°, the gap condition may be omitted.

1. Introduction. A frame sequence {f;}32; in a Hilbert space
‘H has the property that every element in [f;] := span {f;}$2, has a
representation as an infinite linear combination of the frame elements
fi- In contrast with the situation for a basis, the corresponding
coefficients are not necessarily unique, which makes frame sequences
a very useful tool when more freedom is required. A frame sequence is
thus a very natural generalization of the concept of a Riesz sequence
(i.e., a sequence that is a Riesz basis for its closed linear span).

Our goal is to prove some perturbation results for frame sequences.
To motivate the following, remember that if { f;}$2, is a Riesz sequence,
then {g;};2; C H is a Riesz sequence whenever

oo 0 1/2
W [ Sath-w| <u(Tiak) . viez erw,
=1 =1

for a sufficiently small constant p. We prove the same conclusion holds
under a weaker condition than (1).

The direct analogue of this last Riesz sequence result for a frame
sequence {f;}52; does not hold unless [f;] is the whole Hilbert space.
This leads us to consider the notion of the gap from one subspace of
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