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EXACT LOCATION OF α-BLOCH SPACES
IN Lp

a AND Hp OF A
COMPLEX UNIT BALL

WEISHENG YANG AND CAIHENG OUYANG

ABSTRACT. In this paper we prove that, on the unit
ball of Cn, (i) for f ∈ H(B) and 0 < α < ∞, f ∈
Bα ⇔ supz∈B |Rf(z)|(1 − |z|2)α < ∞; as a corollary, Bα =

A(B) ∩ Lip (1 − α) for 0 < α < 1. (ii) Bα(<1+(1/p)) ⊂
Lp

a ⊂ B1+((n+1)/p), Bα(<1) ⊂ Hp ⊂ B1+(n/p) for n > 1 and
0 < p < ∞, where Lp

a, Hp denote the Bergman spaces and
Hardy spaces, respectively. And B1 ⊂ ∩0<p<∞Lp

a ⊂ Bα(>1),

Bα(<1) ⊂ ∩0<p<∞Hp ⊂ Bα(>1). Further, it is proved with
constructive methods that all of the above containments are
strict and best possible.

1. Introduction. Let H(B) denote the class of all holomorphic
functions in the unit ball B of Cn. We say that f ∈ Bα, α-Bloch, if

‖f‖Bα(B) = sup
z∈B

|∇f(z)|(1− |z|2)α < ∞, 0 < α < ∞.

It is clear that Bα is a normed linear space, modulo constant functions,
and Bα1 ⊂ Bα2 for α1 < α2. When n = 1, replace them by H(D) and
Bα(D), where D denotes the unit disk of complex plane.

Hardy and Littlewood proved that [3], [2]: Bα(D) = Lip (1−α). We
know that Lipβ can be used to describe the dual space of Hardy space
Hp(D) for 0 < p < 1 [2]. So Bα are important in the theory of Hardy
spaces. In [15] we gave some invariant gradient characterizations and
Bergman-Carleson measure characterization of Bα on the unit ball.

For B1 = Bloch (B), Timoney showed that Hp 	⊂ Bloch (B) for any
p ∈ (0,∞), but he did not know whether there were Bloch functions
which were not in Hp or not, see Example 3.7(3) of [12]. Later on,
in [10], Ryll and Wojtaszczyk pointed out that Bloch (B) 	⊂ Hp;
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