ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 30, Number 3, Fall 2000

EXACT LOCATION OF α -BLOCH SPACES IN L_a^p AND H^p OF A COMPLEX UNIT BALL

WEISHENG YANG AND CAIHENG OUYANG

ABSTRACT. In this paper we prove that, on the unit ball of \mathbb{C}^n , (i) for $f \in H(B)$ and $0 < \alpha < \infty$, $f \in \mathcal{B}^{\alpha} \Leftrightarrow \sup_{z \in B} |\mathcal{R}f(z)|(1-|z|^2)^{\alpha} < \infty$; as a corollary, $\mathcal{B}^{\alpha} = A(B) \cap \operatorname{Lip}(1-\alpha)$ for $0 < \alpha < 1$. (ii) $B^{\alpha(<1+(1/p))} \subset L_a^p \subset \mathcal{B}^{1+((n+1)/p)}, \mathcal{B}^{\alpha(<1)} \subset H^p \subset \mathcal{B}^{1+(n/p)}$ for n > 1 and $0 , where <math>L_a^p$, H^p denote the Bergman spaces and Hardy spaces, respectively. And $\mathcal{B}^1 \subset \cap_{0 1)}$, $\mathcal{B}^{\alpha(<1)} \subset (1 - \alpha) \subset \mathcal{B}^{\alpha(>1)}$. Further, it is proved with constructive methods that all of the above containments are strict and best possible.

1. Introduction. Let H(B) denote the class of all holomorphic functions in the unit ball B of \mathbb{C}^n . We say that $f \in \mathcal{B}^{\alpha}$, α -Bloch, if

$$||f||_{\mathcal{B}^{\alpha}(B)} = \sup_{z \in B} |\nabla f(z)| (1 - |z|^2)^{\alpha} < \infty, \quad 0 < \alpha < \infty.$$

It is clear that \mathcal{B}^{α} is a normed linear space, modulo constant functions, and $\mathcal{B}^{\alpha_1} \subset \mathcal{B}^{\alpha_2}$ for $\alpha_1 < \alpha_2$. When n = 1, replace them by H(D) and $\mathcal{B}^{\alpha}(D)$, where D denotes the unit disk of complex plane.

Hardy and Littlewood proved that [3], [2]: $\mathcal{B}^{\alpha}(D) = \text{Lip}(1-\alpha)$. We know that $\text{Lip }\beta$ can be used to describe the dual space of Hardy space $H^{p}(D)$ for $0 [2]. So <math>\mathcal{B}^{\alpha}$ are important in the theory of Hardy spaces. In [15] we gave some invariant gradient characterizations and Bergman-Carleson measure characterization of \mathcal{B}^{α} on the unit ball.

For $\mathcal{B}^1 = \operatorname{Bloch}(B)$, Timoney showed that $H_p \not\subset \operatorname{Bloch}(B)$ for any $p \in (0, \infty)$, but he did not know whether there were Bloch functions which were not in H^p or not, see Example 3.7(3) of [12]. Later on, in [10], Ryll and Wojtaszczyk pointed out that Bloch $(B) \not\subset H^p$;

Received by the editors on May 15, 1998, and in revised form on February 10, 1999. 1991 AMS Mathematics Subject Classification. Primary 32A37, Secondary

³²A35. This project supported by National Natural Science Foundation of China.