EXISTENCE OF POSITIVE SOLUTIONS OF HIGHER ORDER NONLINEAR NEUTRAL DIFFERENTIAL EQUATIONS

SATOSHI TANAKA

ABSTRACT. The neutral differential equation
(1.1) $\quad \frac{d^{n}}{d t^{n}}[x(t)+h(t) x(t-\tau)]+\sigma f(t, x(g(t)))=0$
is considered under the following conditions: $n \geq 2 ; \sigma= \pm 1$; $\tau>0 ; h \in C\left[t_{0}-\tau, \infty\right) ; g \in C\left[t_{0}, \infty\right), \lim _{t \rightarrow \infty} g(t)=\infty ;$ $f \in C\left(\left[t_{0}, \infty\right) \times(0, \infty)\right), f(t, u) \geq 0$ for $(t, u) \in\left[t_{0}, \infty\right) \times(0, \infty)$, and $f(t, u)$ is nondecreasing in $u \in(0, \infty)$ for each fixed $t \in\left[t_{0}, \infty\right)$. It is shown that, for the case where $h(t)>-1$ and $h(t)=h(t-\tau)$ on $\left[t_{0}, \infty\right)$, equation (1.1) has a positive solution $x(t)$ satisfying

$$
x(t)=\left[\frac{c}{1+h(t)}+o(1)\right] t^{k} \quad \text { as } t \rightarrow \infty
$$

for some $c>0$ if and only if

$$
\int^{\infty} t^{n-k-1} f\left(t, a[g(t)]^{k}\right) d t<\infty \quad \text { for some } a>0
$$

Here k is an integer with $0 \leq k \leq n-1$.

1. Introduction. In this paper we consider the higher order neutral differential equation

$$
\begin{equation*}
\frac{d^{n}}{d t^{n}}[x(t)+h(t) x(t-\tau)]+\sigma f(t, x(g(t)))=0 \tag{1.1}
\end{equation*}
$$

where $n \geq 2, \sigma= \pm 1$ and $\tau>0$, and the following conditions (i)-(iii) are assumed:
(i) $h:\left[t_{0}-\tau, \infty\right) \rightarrow \mathbf{R}$ is continuous;

[^0]
[^0]: Received by the editors on February 3, 1999, and in revised form on June 1, 1999.

