ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 30, Number 3, Fall 2000

EXISTENCE OF POSITIVE SOLUTIONS OF HIGHER ORDER NONLINEAR NEUTRAL DIFFERENTIAL EQUATIONS

SATOSHI TANAKA

ABSTRACT. The neutral differential equation

(1.1)
$$\frac{d^n}{dt^n} [x(t) + h(t)x(t-\tau)] + \sigma f(t, x(g(t))) = 0$$

is considered under the following conditions: $n \geq 2$; $\sigma = \pm 1$; $\tau > 0$; $h \in C[t_0 - \tau, \infty)$; $g \in C[t_0, \infty)$, $\lim_{t \to \infty} g(t) = \infty$; $f \in C([t_0, \infty) \times (0, \infty))$, $f(t, u) \geq 0$ for $(t, u) \in [t_0, \infty) \times (0, \infty)$, and f(t, u) is nondecreasing in $u \in (0, \infty)$ for each fixed $t \in [t_0, \infty)$. It is shown that, for the case where h(t) > -1 and $h(t) = h(t - \tau)$ on $[t_0, \infty)$, equation (1.1) has a positive solution x(t) satisfying

$$x(t) = \Bigg[\frac{c}{1+h(t)} + o(1)\Bigg]t^k \quad \text{as } t \to \infty$$

for some c > 0 if and only if

$$\int^{\infty} t^{n-k-1} f(t, a[g(t)]^k) \, dt < \infty \quad \text{for some } a > 0.$$

Here k is an integer with $0 \le k \le n-1$.

1. Introduction. In this paper we consider the higher order neutral differential equation

(1.1)
$$\frac{d^n}{dt^n}[x(t) + h(t)x(t-\tau)] + \sigma f(t, x(g(t))) = 0,$$

where $n \ge 2$, $\sigma = \pm 1$ and $\tau > 0$, and the following conditions (i)–(iii) are assumed:

(i) $h: [t_0 - \tau, \infty) \to \mathbf{R}$ is continuous;

Received by the editors on February 3, 1999, and in revised form on June 1, 1999.

Copyright ©2000 Rocky Mountain Mathematics Consortium