# A THEOREM ON TRANSCENDENCE OF INFINITE SERIES 

M.A. NYBLOM

1. Introduction. There are a number of sufficient conditions known within the literature for an infinite series, $\sum_{n=1}^{\infty} 1 / a_{n}$, of positive rationals to converge to an irrational number (see [3], [4], [11], [10] and the references cited therein). These conditions, which are quite varied in form, share one common feature, namely, they all require rapid growth of the sequence $\left\{a_{n}\right\}$ to deduce irrationality of the series. As an illustration consider the following results of Sándor which have been taken from $[\mathbf{1 1}]$ and $[\mathbf{1 2 ]}$.

Theorem 1.1. Let $\left\{a_{m}\right\}, m \geq 1$, be a sequence of positive integers such that

$$
\limsup _{m \rightarrow \infty} \frac{a_{m+1}}{a_{1} a_{2} \cdots a_{m}}=\infty \quad \text { and } \quad \liminf _{m \rightarrow \infty} \frac{a_{m+1}}{a_{m}}>1
$$

Then the sum of the series $\sum_{m=1}^{\infty} 1 / a_{m}$ is an irrational number. Alternatively, if $\left\{a_{m}\right\}$ and $\left\{b_{m}\right\}$ are a sequence of positive integers with $b_{m} \mid b_{m+1}, b_{m} \rightarrow \infty$ and $\lambda>2$ exists such that $b_{N}^{\lambda} \sum_{m>N} a_{m} / b_{m}<1$, for infinitely many $N$, then the sum of the series $\sum_{m=1}^{\infty} a_{m} / b_{m}$, when convergent, is a transcendental number.

In view of the fact that all algebraic numbers cannot be approximated by infinitely many rationals $m / n$ to within $1 / n^{r}$ for any $r \in N \backslash\{0\}$, one possible approach to demonstrating the transcendence of a given series having sum $s$ would be to produce a sequence of rapidly converging rational approximations to $s$, for example, using the partial sums of the series. Such an approximation, in the absence of methods for accelerating the convergence of a series, may still be achieved if the sequence $\left\{a_{n}\right\}$ has sufficiently strong growth as in Theorem 1.1. In this paper we do precisely this by showing that, under the following growth

[^0]
[^0]:    Received by the editors on March 21, 1999, and in revised form on July 29, 1999.

