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1. Introduction. There are a number of sufficient conditions
known within the literature for an infinite series,

∑∞
n=1 1/an, of positive

rationals to converge to an irrational number (see [3], [4], [11], [10]
and the references cited therein). These conditions, which are quite
varied in form, share one common feature, namely, they all require
rapid growth of the sequence {an} to deduce irrationality of the series.
As an illustration consider the following results of Sándor which have
been taken from [11] and [12].

Theorem 1.1. Let {am}, m ≥ 1, be a sequence of positive integers
such that

lim sup
m→∞

am+1

a1a2 · · · am
= ∞ and lim inf

m→∞
am+1

am
> 1.

Then the sum of the series
∑∞

m=1 1/am is an irrational number. Al-
ternatively, if {am} and {bm} are a sequence of positive integers with
bm|bm+1, bm → ∞ and λ > 2 exists such that bλ

N

∑
m>N am/bm < 1,

for infinitely many N , then the sum of the series
∑∞

m=1 am/bm, when
convergent, is a transcendental number.

In view of the fact that all algebraic numbers cannot be approximated
by infinitely many rationalsm/n to within 1/nr for any r ∈ N\{0}, one
possible approach to demonstrating the transcendence of a given series
having sum s would be to produce a sequence of rapidly converging
rational approximations to s, for example, using the partial sums of
the series. Such an approximation, in the absence of methods for
accelerating the convergence of a series, may still be achieved if the
sequence {an} has sufficiently strong growth as in Theorem 1.1. In this
paper we do precisely this by showing that, under the following growth
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