# DIOPHANTINE APPROXIMATION BY CUBES OF PRIMES AND AN ALMOST PRIME 

A. KUMCHEV

$$
\begin{aligned}
& \text { ABSTRACT. Let } \lambda_{1}, \ldots, \lambda_{s} \text { be nonzero with } \lambda_{1} / \lambda_{2} \text { irra- } \\
& \text { tional, and let } \mathcal{S} \text { be the set of values attained by the form } \\
& \qquad \lambda_{1} x_{1}^{3}+\cdots+\lambda_{s} x_{s}^{3}
\end{aligned}
$$

when $x_{1}$ has at most six prime divisors and the remaining variables are prime. In the case $s=4$, we establish that most real numbers are "close" to an element of $\mathcal{S}$. We then prove that if $s=8, \mathcal{S}$ is dense on the real line.

1. Introduction and preliminaries. Let $\lambda_{1}, \ldots, \lambda_{s}$ be nonzero real numbers with $\lambda_{1} / \lambda_{2}$ irrational, and let $\mathbf{P}^{s}$ denote the set of integer points in $\mathbf{R}^{s}$, all coordinates of which are prime. We will be concerned with the distribution of the values taken by the form

$$
\begin{equation*}
\lambda_{1} x_{1}^{3}+\cdots+\lambda_{s} x_{s}^{3} \tag{1.1}
\end{equation*}
$$

on $\mathbf{P}^{s}$. The (optimistic) conjecture is that if $s \geq 4$, they are dense on $\mathbf{R}$, but our factual knowledge on the topic is much worse. Back in 1963, Schwarz [13] showed that if $s \geq 9$, the values of (1.1) on $\mathbf{P}^{s}$ are dense, and although sharper quantitative versions of this result have been obtained (see Vaughan [16] and Baker and Harman [1]), it seems that reducing the minimum value of $s$ is beyond the limit of the present methods. On the other hand, in the similar situation with the classical Waring-Goldbach problem for cubes, Roth [11] showed that if one allows $x$ to take arbitrary integer values, the equation

$$
\begin{equation*}
x^{3}+p_{1}^{3}+p_{2}^{3}+p_{3}^{3}=n \tag{1.2}
\end{equation*}
$$

is solvable for almost all integers $n$, in the sense usually adopted in additive number theory. Let $\mathcal{P}_{r}$ denote the set of integers having at most $r$ prime divisors counted with multiplicities. Brüdern [3] proved

[^0]
[^0]:    Received by the editors on June 11, 1999, and in revised form on September 14, 1999.

