ON EQUAL SUMS OF SIXTH POWERS

AJAI CHOUDHRY

Abstract

This paper provides a method of generating infinitely many integer solutions of the simultaneous equations $a^{r}+b^{r}+c^{r}=d^{r}+e^{r}+f^{r}$ where $r=1,2$ and 6 . Several numerical solutions of this system of equations have also been obtained in this paper.

This paper deals with the simultaneous diophantine equations given by

$$
\begin{equation*}
a^{r}+b^{r}+c^{r}=d^{r}+e^{r}+f^{r} \tag{1}
\end{equation*}
$$

where $r=1,2$ and 6 . Numerical and parametric solutions of (1) with $r=2$ and 6 have been obtained earlier by Subba Rao [9], Brudno [2, 3], Bremner [1], Choudhry [4] and Delorme [5]. It has been noted by Guy [6, p. 142] that all the known simultaneous solutions of (1) with $r=2$ and 6 also satisfy (with appropriately chosen signs) the following three equations

$$
\begin{align*}
a^{2}+a d-d^{2} & =f^{2}+f c-c^{2} \\
b^{2}+b e-e^{2} & =d^{2}+d a-a^{2} \tag{2}\\
c^{2}+c f-f^{2} & =e^{2}+e b-b^{2}
\end{align*}
$$

Guy has asked the question whether there exists a counterexample which, while satisfying (1) for $r=2$ and 6 , does not satisfy the three equations given by (2). We also note that there exist solutions of (1) with $r=6$ and $r \neq 2$. Lander, Parkin and Selfridge [7] gave one such numerical solution while Montgomery (as quoted by Guy [6, p. 142]) has listed 18 such solutions.

We will first obtain a numerical solution of (1) with $r=1,2$ and 6. This solution does not satisfy the three equations given by (2) and thus provides a counterexample asked for by Guy. Next we will use the

[^0]
[^0]: Received by the editors on January 11, 1999, and in revised form on February 18, 1999.

