BOCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 30, Number 3, Fall 2000

WILLMORE TORI IN A WIDE FAMILY OF CONFORMAL STRUCTURES ON ODD DIMENSIONAL SPHERES

J.L. CABRERIZO AND M. FERNÁNDEZ

ABSTRACT. We obtain a variable reduction principle for the Willmore variational problem in an ample class of conformal structures on S^{2n+1} . This variational problem is transformed into another one, associated with an elastic-energy functional with potential, on spaces of curves in $\mathbb{C}P^n$. Then, we give a simple method to construct Willmore tori in certain conformal structures on S^{2n+1} . Moreover, we exhibit some families of Willmore tori for the standard conformal class on S^3 and S^7 .

1. Introduction. Let S^{2n+1} be the unit sphere in C^{n+1} endowed with the standard metric \bar{g} . The unit circle \mathbf{S}^1 acts naturally on \mathbf{S}^{2n+1} to produce $\mathbf{C}P^n$ as orbit space. The canonical projection π : $(\mathbf{S}^{2n+1}, \bar{g}) \rightarrow (\mathbf{C}P^n, g)$ is a Riemannian submersion, where gdenotes the Fubini-study metric of constant holomorphic sectional curvature 4. A vertical, unit global vector field V is defined on \mathbf{S}^{2n+1} by V(z) = iz, for all $z \in \mathbf{S}^{2n+1}$. The horizontal distribution \mathcal{H} is defined to be the \bar{g} -orthogonal complementary to the orbits. As usual, overbars will denote horizontal lifts of the corresponding objects in a Riemannian submersion (see [6], [13] for details about notation and terminology). In particular, the Levi-Civita connections $\overline{\nabla}$ and ∇ of \overline{q} and g, respectively, are related via the following well-known formulae:

- $\bar{\nabla}_{\bar{X}}\bar{Y} = \overline{\nabla_X Y} \bar{g}(i\bar{X},\bar{Y})V,$ (1.1)
- $\bar{\nabla}_{\bar{X}}V = \bar{\nabla}_V\bar{X} = i\bar{X},$ (1.2)
- $\bar{\nabla}_V V = 0.$ (1.3)

Remark 1. (i) It should be noticed that the last formula shows the geodesic nature of the orbits in $(\mathbf{S}^{2n+1}, \bar{q})$. (ii) Since π may also be

Copyright ©2000 Rocky Mountain Mathematics Consortium

Received by the editors on November 24, 1998.

¹⁹⁹¹ AMS Mathematics Subject Classification. 53C40, 53A05. Key words and phrases. Willmore torus, Kaluza-Klein metric, conformal structure, ϕ -elastic curve.