ON FUNCTIONAL REPRESENTATION OF COMMUTATIVE LOCALLY A-CONVEX ALGEBRAS

JORMA ARHIPPAINEN

Abstract

We shall give a Gelfand type of representation of commutative locally A-convex algebras by using a certain family of seminorms defined on the carrier space of this algebra. By using this representation we give a generalization of locally convex uniform algebras.

1. Introduction. Let (A, T) be a commutative algebra over the complex numbers equipped with a topology T. If A has unit element it will be denoted by e. In this paper we assume that the topology T on A has been given by means of a family $\mathcal{P}=\left\{p_{\lambda} \mid \lambda \in \Lambda\right\}$ of seminorms on A. This topology will be denoted by $T(\mathcal{P})$. We assume that $T(\mathcal{P})$ is a Hausdorff topology (i.e., from the condition $p_{\lambda}(x)=0, x \in A$, for all $\lambda \in \Lambda$ it follows that $x=0$). Suppose further that \mathcal{P} has the following property. If λ and $\mu \in \Lambda$ then $\max \left\{p_{\lambda}, p_{\mu}\right\} \in \mathcal{P}$, i.e., \mathcal{P} is directed. This property is needed in some place, but it is not necessary in general. We shall say that $(A, T(\mathcal{P}))$ is a locally A-convex algebra if for each $x \in A$ and $\lambda \in \Lambda$ there is some constant $M_{(x, \lambda)}>0$ (depending on x and λ) such that

$$
\begin{equation*}
p_{\lambda}(x y) \leq M_{(x, y)} p_{\lambda}(y) \quad \text { for all } y \in A \tag{1}
\end{equation*}
$$

If the above $M_{(x, \lambda)}$ does not depend on λ, i.e., (1) holds for all $\lambda \in \Lambda$ for some constant $M_{x}>0$ depending only on x, then we say that $(A, T(\mathcal{P}))$ is a locally uniformly A-convex algebra. Furthermore, we say that $(A, T(\mathcal{P}))$ is locally m-convex if $p_{\lambda}(x y) \leq p_{\lambda}(x) p_{\lambda}(y)$ for all x and $y \in A$ and $\lambda \in \Lambda$. Obviously a locally m-convex algebra is locally A-convex. Note that the multiplication in locally A-convex algebra is in general only separately continuous and in locally m-convex algebra jointly continuous. The concepts of A-convex and uniformly A-convex algebras were introduced in $[\mathbf{1 3}],[\mathbf{1 4}]$ and $[\mathbf{1 5}]$. See also $[\mathbf{9}],[\mathbf{2 1}]$, $[\mathbf{2 2}],[\mathbf{2 3}]$ and $[\mathbf{2 4}]$. A standard example of uniformly locally A-convex algebra is an algebra of bounded continuous complex-valued functions

[^0]
[^0]: Received by the editors on November 21, 1998.

