ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 30, Number 3, Fall 2000

ON FUNCTIONAL REPRESENTATION OF COMMUTATIVE LOCALLY A-CONVEX ALGEBRAS

JORMA ARHIPPAINEN

ABSTRACT. We shall give a Gelfand type of representation of commutative locally A-convex algebras by using a certain family of seminorms defined on the carrier space of this algebra. By using this representation we give a generalization of locally convex uniform algebras.

1. Introduction. Let (A, T) be a commutative algebra over the complex numbers equipped with a topology T. If A has unit element it will be denoted by e. In this paper we assume that the topology T on A has been given by means of a family $\mathcal{P} = \{p_{\lambda} \mid \lambda \in \Lambda\}$ of seminorms on A. This topology will be denoted by $T(\mathcal{P})$. We assume that $T(\mathcal{P})$ is a Hausdorff topology (i.e., from the condition $p_{\lambda}(x) = 0, x \in A$, for all $\lambda \in \Lambda$ it follows that x = 0). Suppose further that \mathcal{P} has the following property. If λ and $\mu \in \Lambda$ then max $\{p_{\lambda}, p_{\mu}\} \in \mathcal{P}$, i.e., \mathcal{P} is directed. This property is needed in some place, but it is not necessary in general. We shall say that $(A, T(\mathcal{P}))$ is a locally A-convex algebra if for each $x \in A$ and $\lambda \in \Lambda$ there is some constant $M_{(x,\lambda)} > 0$ (depending on x and λ) such that

(1)
$$p_{\lambda}(xy) \le M_{(x,y)}p_{\lambda}(y)$$
 for all $y \in A$

If the above $M_{(x,\lambda)}$ does not depend on λ , i.e., (1) holds for all $\lambda \in \Lambda$ for some constant $M_x > 0$ depending only on x, then we say that $(A, T(\mathcal{P}))$ is a locally uniformly A-convex algebra. Furthermore, we say that $(A, T(\mathcal{P}))$ is locally m-convex if $p_{\lambda}(xy) \leq p_{\lambda}(x)p_{\lambda}(y)$ for all xand $y \in A$ and $\lambda \in \Lambda$. Obviously a locally m-convex algebra is locally A-convex. Note that the multiplication in locally A-convex algebra is in general only separately continuous and in locally m-convex algebra jointly continuous. The concepts of A-convex and uniformly A-convex algebras were introduced in [13], [14] and [15]. See also [9], [21], [22], [23] and [24]. A standard example of uniformly locally A-convex algebra is an algebra of bounded continuous complex-valued functions

Received by the editors on November 21, 1998.

Copyright ©2000 Rocky Mountain Mathematics Consortium