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HARMONIC BESOV SPACES ON
THE UNIT BALL IN Rn

MIROLJUB JEVTIĆ AND MIROSLAV PAVLOVIĆ

ABSTRACT. We define and characterize the harmonic
Besov space Bp, 1 ≤ p ≤ ∞, on the unit ball B in Rn. We
prove that the Besov spaces Bp, 1 ≤ p ≤ ∞, are natural quo-
tient spaces of certain Lp spaces. The dual of Bp, 1 ≤ p < ∞,
can be identified with Bq , 1/p + 1/q = 1, and the dual of the
little harmonic Bloch space B0 is B1.

1. Introduction. Let dν be the volume measure on the unit ball
B = Bn in Rn normalized so that B has volume equal to one. For
any real α > 0 we consider the measure dνα(x) = cα(1−|x|2)α−1 dν(x)
where the constant cα is chosen so that dνα has total mass 1. An
integration in polar coordinates shows that cα = (2/n)[B(n/2, α)]−1.
See [1]. Also, we let dτ (x) = (1− |x|2)−n dν(x).

For f harmonic on B, f ∈ h(B), and any positive integer m, we
write |∂mf(x)| = ∑

|α|=m |∂αf(x)|, where ∂αf(x) = (∂|α|f/∂xα)(x), α
a multi-index.

For 1 ≤ p ≤ ∞, the harmonic Besov space Bp = Bp(B) consists of
harmonic functions f on B such that the function (1 − |x|2)k|∂kf(x)|
belongs to Lp(B, dτ ) for some positive integer k > (n− 1)/p. We note
that the definition is independent of k (see Theorem 3.2).

Let B0 be the subspace of B∞ consisting of functions f ∈ h(B) with

(1− |x|2)k|∂kf(x)| −→ 0, as x → S, for some k > 0,

where S = ∂B is the (full) topological boundary of B in Rn.

For α > 0 and 0 < p < ∞, we let lp,α−1 denote the closed subspace
of Lp,α−1 = Lp(B, dνα) consisting of harmonic functions in Lp,α−1.

The purpose of the present paper is to study the Besov spaces Bp.
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