BOCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 31, Number 4, Winter 2001

HARMONIC BESOV SPACES ON THE UNIT BALL IN \mathbb{R}^n

MIROLJUB JEVTIĆ AND MIROSLAV PAVLOVIĆ

ABSTRACT. We define and characterize the harmonic Besov space B^p , $1 \le p \le \infty$, on the unit ball B in \mathbf{R}^n . We prove that the Besov spaces B^p , $1 \leq p \leq \infty$, are natural quotient spaces of certain L^p spaces. The dual of B^p , $1 \le p < \infty$, can be identified with B^q , 1/p + 1/q = 1, and the dual of the little harmonic Bloch space B_0 is B^1 .

1. Introduction. Let $d\nu$ be the volume measure on the unit ball $B = B_n$ in \mathbb{R}^n normalized so that B has volume equal to one. For any real $\alpha > 0$ we consider the measure $d\nu_{\alpha}(x) = c_{\alpha}(1-|x|^2)^{\alpha-1} d\nu(x)$ where the constant c_{α} is chosen so that $d\nu_{\alpha}$ has total mass 1. An integration in polar coordinates shows that $c_{\alpha} = (2/n)[B(n/2,\alpha)]^{-1}$. See [1]. Also, we let $d\tau(x) = (1 - |x|^2)^{-n} d\nu(x)$.

For f harmonic on B, $f \in h(B)$, and any positive integer m, we write $|\partial^m f(x)| = \sum_{|\alpha|=m} |\partial^{\alpha} f(x)|$, where $\partial^{\alpha} f(x) = (\partial^{|\alpha|} f/\partial x^{\alpha})(x)$, α a multi-index.

For $1 \leq p \leq \infty$, the harmonic Besov space $B^p = B^p(B)$ consists of harmonic functions f on B such that the function $(1 - |x|^2)^k |\partial^k f(x)|$ belongs to $L^p(B, d\tau)$ for some positive integer k > (n-1)/p. We note that the definition is independent of k (see Theorem 3.2).

Let B_0 be the subspace of B^{∞} consisting of functions $f \in h(B)$ with

 $(1 - |x|^2)^k |\partial^k f(x)| \longrightarrow 0$, as $x \to S$, for some k > 0,

where $S = \partial B$ is the (full) topological boundary of B in \mathbb{R}^n .

For $\alpha > 0$ and $0 , we let <math>l^{p,\alpha-1}$ denote the closed subspace of $L^{p,\alpha-1} = L^p(B, d\nu_\alpha)$ consisting of harmonic functions in $L^{p,\alpha-1}$.

The purpose of the present paper is to study the Besov spaces B^p .

Copyright ©2001 Rocky Mountain Mathematics Consortium

¹⁹⁸⁰ AMS Mathematics Subject Classification (1985 revision). Primary 31B05, Secondary 31B10, 32A37, 30D55, 30D45. Received by the editors on March 2, 2000, and in revised form on July 7, 2000.