CUBIC FIELDS WITH A POWER BASIS

BLAIR K. SPEARMAN AND KENNETH S. WILLIAMS

Abstract

It is shown that there exist infinitely many cubic fields L with a power basis such that the splitting field M of L contains a given quadratic field K.

1. Introduction. We prove the following result, which answers a question posed to the authors by James G. Huard.

Theorem. Let K be a fixed quadratic field. Then there exist infinitely many cubic fields L with a power basis such that the splitting field M of L contains K.

We remark that Dummit and Kisilevsky [2] have shown that there exist infinitely many cyclic cubic fields with a power basis.
2. Squarefree values of quadratic polynomials. The following result is due to Nagel [5]. We quote it in the form given by Huard [3].

Proposition 2.1. Let $f(x)$ be a polynomial with integer coefficients such that
(i) the degree of $f(x)=k$,
(ii) the discriminant of $f(x)$ is not equal to zero,
(iii) $f(x)$ is primitive,
(iv) $f(x)$ has no fixed divisors which are k th powers of primes.

Then infinitely many of $f(1), f(2), f(3), \ldots$ are k th power free.

We recall that a positive integer $d>1$ is called a fixed divisor of the primitive polynomial $f(x) \in \mathbf{Z}[x]$ if $f(k) \equiv 0(\bmod d)$ for all

[^0]Key words and phrases. Cubic fields, power bases.
Received by the editors on March 3, 2000, and in revised form on June 21, 2000.

[^0]: 1991 AMS Mathematics Subject Classification. Primary 11R16.

