ON THE NUMBER OF PARTITIONS WITH A FIXED LEAST PART

NEVILLE ROBBINS

> ABSTRACT. Let $P(n), Q(n)$ denote, respectively, the set of all unrestricted partitions of n and the set of all partitions of n into distinct parts. For $1 \leq j \leq n$, we derive formulas that permit the computation of the number of partitions in $P(n), Q(n)$ respectively whose least part is j.

1. Introduction. If $1 \leq j \leq n$, let $F_{j}(n), f_{j}(n)$ denote, respectively, the number of partitions of the natural number n whose least part is j, the number of partitions of n into distinct parts whose least part is j. In this note, we derive formulas for the $F_{j}(n)$. We also derive recurrences that permit the evaluation of the $f_{j}(n)$ and present asymptotic formulas for the $f_{j}(n)$. In addition, we determine the parity of $f_{1}(n)$.

2. Preliminaries.

Definition 1. Let $p(n), q(n)$ denote, respectively, the numbers of unrestricted partitions of n, partitions of n into distinct parts.

Definition 2. If $1 \leq j \leq n$, let $F_{j}(n)$ denote the number of partitions of n whose least part is j.

Definition 3. If $1 \leq j \leq n$, let $f_{j}(n)$ denote the number of partitions of n into distinct parts whose least part is j; let $f_{j}(0)=0$.

Definition 4. Let $\omega(k)=k(3 k-1) / 2$.
(1) $q(n) \equiv 1(\bmod 2)$ if and only if $n=\omega(\pm k)$ for some $k \geq 1$.
(2) $q(n) \sim 18^{-1 / 4}(24 n+1)^{-3 / 4} e^{(\pi \sqrt{48 n+2} / 12)}$.

Remarks. (1) is well known; (2) was proven by Hagis [1].

[^0]
[^0]: Received by the editors on April 24, 2000.

