STURM-LIOUVILLE EIGENVALUE PROBLEMS FOR HALF-LINEAR ORDINARY DIFFERENTIAL EQUATIONS

TAKAŜI KUSANO AND MANABU NAITO

ABSTRACT. In this paper we discuss the half-linear SturmLiouville eigenvalue problem

$$
\left\{\begin{array}{l}
\left(p(t)\left|x^{\prime}\right|^{\alpha-1} x^{\prime}\right)^{\prime}+\lambda q(t)|x|^{\alpha-1} x=0, \quad a \leq t \leq b \\
A x(a)-A^{\prime} x^{\prime}(a)=0, \quad B x(b)+B^{\prime} x^{\prime}(b)=0
\end{array}\right.
$$

for the case where $q(t)$ may change signs in the interval $[a, b]$. As a typical result we have the following theorem. If $q(t)$ takes both a positive value and a negative value, then the totality of eigenvalues consists of two sequences $\left\{\lambda_{n}^{+}\right\}_{n=0}^{\infty}$ and $\left\{\lambda_{n}^{-}\right\}_{n=0}^{\infty}$ such that $\cdots<\lambda_{n}^{-}<\cdots<\lambda_{1}^{-}<\lambda_{0}^{-}<0<\lambda_{0}^{+}<\lambda_{1}^{+}<\cdots<$ $\lambda_{n}^{+}<\cdots, \lim _{n \rightarrow \infty} \lambda_{n}^{+}=+\infty$ and $\lim _{n \rightarrow \infty} \lambda_{n}^{-}=-\infty$. The eigenfunctions associated with $\lambda=\lambda_{n}^{+}$and λ_{n}^{-}have exactly n zeros in (a, b). This gives a complete generalization of the well-known results for the linear case $(\alpha=1)$.

1. Introduction. In this paper the second order half-linear ordinary differential equation

$$
\begin{equation*}
\left(p(t)\left|x^{\prime}\right|^{\alpha-1} x^{\prime}\right)^{\prime}+\lambda q(t)|x|^{\alpha-1} x=0, \quad a \leq t \leq b \tag{1.1}
\end{equation*}
$$

is considered together with the boundary conditions

$$
\begin{equation*}
A x(a)-A^{\prime} x^{\prime}(a)=0, \quad B x(b)+B^{\prime} x^{\prime}(b)=0 \tag{1.2}
\end{equation*}
$$

In equation (1.1) we assume that $\alpha>0$ is a positive constant, p and q are real-valued continuous functions for $a \leq t \leq b$, and $p(t)>0$, $a \leq t \leq b$, and $\lambda \in \mathbf{R}$ is a real parameter. In the boundary conditions (1.2), A, A^{\prime}, B and B^{\prime} are given real numbers such that $A^{2}+A^{\prime 2} \neq 0$ and $B^{2}+B^{\prime 2} \neq 0$.

If $\alpha=1$, then equation (1.1) reduces to the linear equation

$$
\begin{equation*}
\left(p(t) x^{\prime}\right)^{\prime}+\lambda q(t) x=0, \quad a \leq t \leq b \tag{1.3}
\end{equation*}
$$

[^0]
[^0]: Received by the editors on December 23, 1999.

