ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 31, Number 3, Fall 2001

SYMPLECTIC GEOMETRY OF VECTOR BUNDLE MAPS OF TANGENT BUNDLES

PO-HSUN HSIEH

ABSTRACT. If (M,g) is a Riemannian manifold, then TM has a canonical almost Kähler structure. The derivative of a map of Riemannian manifolds rarely preserves the Kähler forms of the tangent bundles, even up to conformality. Thus we define a weakening of symplectomorphism, called H-isotropic map and study the H-isotropy of vector bundle maps.

1. Introduction and notation. If L is a submanifold of an almost Hermitian manifold (N, J, g, ω) , $\omega = g(J, \cdot, \cdot)$, then the normal bundle L^{\perp} of L also possesses an almost Hermitian structure $(\hat{J}, \hat{g}, \hat{\omega})$. Here $\hat{\omega}$ is called the canonical almost symplectic structure of L^{\perp} (cf. [4]). An interesting problem in symplectic geometry is: when are ω and $\hat{\omega}$ isomorphic? (Cf. [6], [4].) A job relevant to this problem is to study vector bundle maps between two such bundles L_1^{\perp} and L_2^{\perp} (e.g., [4, Theorem 4.1]). The tangent bundle of a Riemannian manifold can be thought of as a special case of a normal bundle of an almost Hermitian manifold [4]. Moreover, the almost symplectic form on TM is in fact just a pull-back of the canonical symplectic form on T^*M . Thus we are motivated to study the symplectic geometry of vector bundle maps of tangent bundles of Riemannian manifolds.

Suppose (M, g) is a Riemannian manifold. Then TM is equipped with Sasaki metric \hat{g} [8], [2]. If $X \in \Gamma(TM)$, then we use X^H and X^V to denote its horizontal and vertical lifts to TM, respectively. An almost complex structure J for TM compatible with \hat{g} is defined as follows: $J(X_{\xi}^H + Y_{\xi}^V) = X_{\xi}^V - Y_{\xi}^H$ [2]. The 2-form $\omega := \hat{g}(J \cdot, \cdot)$ is exactly $D^*(\omega_c)$ where $D : TM \to T^*M$ is the dual map induced by g and ω_c is the canonical symplectic form on T^*M [2]. Thus we call (J, \hat{g}, ω) the canonical almost Kähler structure of TM. While \hat{g} has been studied extensively, little seems to have been done about ω .

This research was done when the author was at the University of Maryland, College Park.

Research partially supported by NSF grant DMS-9205139. Received by the editors on October 15, 1998.

Copyright ©2001 Rocky Mountain Mathematics Consortium