SYMPLECTIC GEOMETRY OF VECTOR BUNDLE MAPS OF TANGENT BUNDLES

PO-HSUN HSIEH

Abstract

If (M, g) is a Riemannian manifold, then $T M$ has a canonical almost Kähler structure. The derivative of a map of Riemannian manifolds rarely preserves the Kähler forms of the tangent bundles, even up to conformality. Thus we define a weakening of symplectomorphism, called H-isotropic map and study the H-isotropy of vector bundle maps.

1. Introduction and notation. If L is a submanifold of an almost Hermitian manifold $(N, J, g, \omega), \omega=g(J \cdot, \cdot)$, then the normal bundle L^{\perp} of L also possesses an almost Hermitian structure $(\hat{J}, \hat{g}, \hat{\omega})$. Here $\hat{\omega}$ is called the canonical almost symplectic structure of L^{\perp} (cf. [4]). An interesting problem in symplectic geometry is: when are ω and $\hat{\omega}$ isomorphic? (Cf. [6], [4].) A job relevant to this problem is to study vector bundle maps between two such bundles L_{1}^{\perp} and L_{2}^{\perp} (e.g., [4, Theorem 4.1]). The tangent bundle of a Riemannian manifold can be thought of as a special case of a normal bundle of an almost Hermitian manifold [4]. Moreover, the almost symplectic form on $T M$ is in fact just a pull-back of the canonical symplectic form on $T^{*} M$. Thus we are motivated to study the symplectic geometry of vector bundle maps of tangent bundles of Riemannian manifolds.

Suppose (M, g) is a Riemannian manifold. Then $T M$ is equipped with Sasaki metric $\hat{g}[\mathbf{8}]$, [2]. If $X \in \Gamma(T M)$, then we use X^{H} and X^{V} to denote its horizontal and vertical lifts to $T M$, respectively. An almost complex structure J for $T M$ compatible with \hat{g} is defined as follows: $J\left(X_{\xi}^{H}+Y_{\xi}^{V}\right)=X_{\xi}^{V}-Y_{\xi}^{H}[\mathbf{2}]$. The 2-form $\omega:=\hat{g}(J \cdot, \cdot)$ is exactly $D^{*}\left(\omega_{c}\right)$ where $D: T M \rightarrow T^{*} M$ is the dual map induced by g and ω_{c} is the canonical symplectic form on $T^{*} M[\mathbf{2}]$. Thus we call (J, \hat{g}, ω) the canonical almost Kähler structure of $T M$. While \hat{g} has been studied extensively, little seems to have been done about ω.

[^0]
[^0]: This research was done when the author was at the University of Maryland, College Park.

 Research partially supported by NSF grant DMS-9205139.
 Received by the editors on October 15, 1998.

