BOCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 31, Number 3, Fall 2001

C*-ALGEBRAS OF DYNAMICAL SYSTEMS OF QUASI ROTATIONS ON TORI

CARLA FARSI AND NEIL WATLING

ABSTRACT. In this note we determine the isomorphism classes of the crossed product C^* -algebras of affine (n, λ) quasi rotations of \mathbf{T}^n .

Introduction. There have been considerable contributions 1. to the computation of K-theoretical and isomorphism invariants of C^* -algebras of dynamical systems on the *n*-torus \mathbf{T}^n , which include certain noncommutative tori [5], [3], [7]. Riedel [5] classified the crossed products of $C(\mathbf{T}^n)$ by minimal rotations of \mathbf{T}^n , i.e., minimal transformations of \mathbf{T}^n with degree matrix $D(\phi) = I_n$. He showed that the set of eigenvalues of ϕ is a complete isomorphism invariant. When ϕ is a minimal homeomorphism of \mathbf{T}^n with quasi discrete spectrum, Packer [3] computed the tracial range of $K_0(C(\mathbf{T}^n) \rtimes_{\alpha_{\phi}} \mathbf{Z})$. For n = 2, Rouhani [7] classified, by using K-theoretical invariants, the isomorphism classes of the crossed product C^* -algebras $C(\mathbf{T}^2) \rtimes_{\alpha_{\phi}} \mathbf{Z}$, where ϕ is an (affine) irrational quasi rotation of \mathbf{T}^2 . That is an (affine) transformation that has a unitary eigenvalue $\lambda = e^{2\pi i\theta}$ (θ irrational) with a unitary eigenfunction f having degree matrix $D(f) = [n, m] \neq 0$, where n, m are relatively prime and the degree matrix $D(\phi)$ satisfies $\operatorname{rank}_{\mathbf{Q}}(D(\phi) - I_2) = 1$. The concept of quasi rotation admits a natural generalization to an n quasi rotation for transformations $\phi : \mathbf{T}^n \to \mathbf{T}^n$. Roughly speaking, ϕ is now required to have n-1 eigenvalues while the degree matrix $D(\phi)$ still satisfies $\operatorname{rank}_{\mathbf{Q}}(D(\phi) - I_n) = 1$. (See Definition 2 and Lemma 3.)

Our main result, which generalizes the main theorem in [7] to \mathbf{T}^n , $n \geq 3$, is the characterization, using K-theoretical invariants, of the isomorphism classes of crossed products $C(\mathbf{T}^n) \rtimes_{\alpha_{\phi}} \mathbf{Z}$ of \mathbf{T}^n , where ϕ is an affine n quasi rotation, provided some additional conditions are

Received by the editors on September 4, 1997.

¹⁹⁹¹ AMS Mathematics Subject Classification. Primary 46L80, 46L40. Key words and phrases. Dynamical systems, tori, C^{*}-algebras, classification. First author partially supported by a University of Colorado Junior Faculty Award.

Copyright ©2001 Rocky Mountain Mathematics Consortium