SELF-ADJOINT OPERATORS GENERATED FROM NON-LAGRANGIAN SYMMETRIC DIFFERENTIAL EQUATIONS HAVING ORTHOGONAL POLYNOMIAL EIGENFUNCTIONS

W.N. EVERITT, K.H. KWON, J.K. LEE,
L.L. LITTLEJOHN AND S.C. WILLIAMS

Abstract

We discuss the self-adjoint spectral theory associated with a certain fourth-order non-Lagrangian symmetrizable ordinary differential equation $l_{4}[y]=\lambda y$ that has a sequence of orthogonal polynomial solutions. This example was first discovered by Jung, Kwon, and Lee. In their paper, they derive the remarkable formula for these polynomials $\left\{Q_{n}(x)\right\}_{n=0}^{\infty}$: $$
Q_{n}(x)=n \int_{1}^{x} P L_{n-1}(t) d t, \quad n \in \mathbf{N}
$$ where $\left\{P L_{n}(x)\right\}_{n=0}^{\infty}$ are the left Legendre type polynomials. The left Legendre type polynomials and the spectral analysis of the associated symmetric fourth-order differential equation that they satisfy have been extensively studied previously by Krall, Loveland, Everitt, and Littlejohn.

Despite the non-symmetrizability of the expression $l_{4}[\cdot]$, we show that there exists a self-adjoint operator S in a certain Hilbert space H generated by $l_{4}[\cdot]$ that has the "polynomial" sequence of ordered pairs $\left\{\left\langle Q_{n}(x), Q_{n}^{\prime}(-1)\right\rangle\right\}_{n=0}^{\infty}$ as a complete set of eigenfunctions in H. This operator S is related to the derivative of the self-adjoint operator T which has the left Legendre type polynomials $\left\{P L_{n}(x)\right\}_{n=0}^{\infty}$ as eigenfunctions. We also develop a left-definite theory for $l_{4}[\cdot]$. This unexpected example casts further difficulties in the efforts to extend and generalize certain classification results in orthogonal polynomials and differential equations.

[^0]
[^0]: 1991 Mathematics Subject Classification. Primary 33C45, 34L05, 34L10, Secondary 34B20.

 Key words and phrases. Sobolev orthogonal polynomials, non-Lagrangian symmetric, self-adjoint operators, left Legendre type polynomials.

 Research for both the first and fourth authors is partially supported from the National Science Foundation under grant number DMS-9970478. The second author acknowledges partial research support from the BK-21 project.

 Received by the editors on June 10, 1999.

