BOCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 31, Number 3, Fall 2001

IRREDUCIBLE CONTINUA OF TYPE λ WITH ALMOST UNIQUE HYPERSPACE

GERARDO ACOSTA, JANUSZ J. CHARATONIK AND ALEJANDRO ILLANES

ABSTRACT. For an irreducible continuum X of type λ we study the family of all continua Y for which hyperspaces of subcontinua C(X) and C(Y) are homeomorphic. The family is determined if each layer of X is a layer of cohesion and the set of degenerate layers is dense in X.

1. Introduction. Given a (metric) continuum X, denote by C(X)the hyperspace of subcontinua of X (i.e., the family of all subcontinua of X) metrized by the Hausdorff metric. A class Λ of continua is said to be *C*-determined (see [16, p. 33]), provided that for every $X, Y \in \Lambda$ if the hyperspaces C(X) and C(Y) are homeomorphic, then so are the continua X and Y. For various results on this subject, see e.g., [16,pp. 32–33], [10, pp. 437–438], [8], [9], [14] and [15]. The following concept is closely related to the above.

For a given continuum X, consider a family $\Im(X)$ of continua Y such that:

(1.1) no two distinct members of $\Im(X)$ are homeomorphic,

(1.2) C(Y) is homeomorphic to C(X) for each member Y of $\Im(X)$,

(1.3) $\Im(X)$ is the maximal family satisfying conditions (1.1) and (1.2), i.e., if Z is a continuum such that C(Z) is homeomorphic to C(X), then Z is homeomorphic to Y for some $Y \in \mathfrak{S}(X)$.

A continuum X is said to have *unique hyperspace* provided that the family $\Im(X)$ consists of one element only, viz. of X, [1, Definition 1]; almost unique hyperspace provided that the family $\Im(X)$ is finite and consists of more than one element, [2, Definition 1.1].

Copyright ©2001 Rocky Mountain Mathematics Consortium

²⁰⁰⁰ Mathematics Subject Classification. 54B20, 54F15, 54F50.

Key words and phrases. Arc-like, compactification, continuum, homeomorphism, hyperspace, irreducible, type $\lambda,$ ray, unique hyperspace. Received by the editors on April 14, 2000.