A GENERALIZATION OF A THEOREM OF COHN ON THE EQUATION $x^{3}-N y^{2}= \pm 1$

F. LUCA AND P.G. WALSH

1. Introduction. In [2], Cohn investigated the solvability of the Diophantine equation

$$
\begin{equation*}
x^{3}-N y^{2}= \pm 1 \tag{1.1}
\end{equation*}
$$

Improving upon previous work of Stroeker [5], Cohn proved the following theorem.

Theorem A. Let N denote a squarefree positive integer with no prime factor of the form $3 k+1$. Then the equation $x^{3}-N y^{2}=1$ has no solutions in positive integers, and the equation $x^{3}-N y^{2}=-1$ has no solutions in positive integers, unless $N \in\{1,2\}$, in which case $(N, x, y)=(1,2,3)$ and $(N, x, y)=(2,23,78)$ are the only solutions.

The interesting case in this theorem arises when the irreducible quadratic factors of $x^{3} \pm 1$ take on values of the form $3 z^{2}$, for otherwise the result is an immediate consequence of quadratic reciprocity. Cohn deals with this case in a very clever manner by determining all of the integer solutions to the respective equations

$$
x^{2}+x+1=3 z^{2}, \quad x-1=3 N w^{2}
$$

and

$$
x^{2}-x+1=3 z^{2}, \quad x+1=3 N w^{2}
$$

which are equivalent respectively to

$$
\begin{equation*}
3 N^{2} w^{4}+3 N w^{2}+1=z^{2} \tag{1.2}
\end{equation*}
$$

[^0]
[^0]: 1991 AMS Mathematics Subject Classification. 11D25, 11J86.
 Received by the editors on October 22, 1999, and in revised form on December 7, 1999.

