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1. Introduction. In this paper we discuss a new approach and an
extension of the results in [11] regarding transmission boundary value
problems and spectral theory for singular integral operators on Lips-
chitz domains. The main novelty here is the consideration of variable
coefficient operators and systems which, in turn, requires a change in
the strategy employed in [11]. In that paper, an approach based on
the Serrin-Weinberger asymptotic theory, akin to the influential work
of Dahlberg and Kenig [9], has been used. By further building on the
work in [11, 20, 34, 44], here we develop an alternative approach,
based on the regularity of the Neumann function, which is capable of
handling variable coefficient operators of Schrodinger type on Lipschitz
subdomains of Riemannian manifolds. One key feature of this approach
is that it avoids the discussion of the asymptotic behavior at infinity
for solutions of elliptic PDE’s with bounded, measurable coefficients.
In order to be more specific we shall now introduce some notation,
starting with the geometric setting we have in mind.

Assume that M is a compact Riemannian manifold, of real dimension
n = dimM > 2, equipped with a Lipschitz metric tensor g :=
> gjkdz; ® dxy. Throughout the paper we let dV := g %dxy .. . dxy,
where g := det g1, be the volume element on M, and denote by

(1) Au=g7 2" 0;(¢F g 0u), ()= (g 0
7,k

the Laplace-Beltrami operator on M.
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