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ABSTRACT. In the study of smoothing spline estimators,
some convolution-kernel-like properties of the Green’s func-
tion for an appropriate boundary value problem, depending
on the design density, are needed. For the uniform density,
the Green’s function can be computed more or less explic-
itly. Then, integral equation methods are brought to bear to
establish the kernel-like properties of said Green’s function.
We briefly survey how the Green’s function arises in spline
smoothing as the equivalent kernel, the reproducing kernel
of a suitable Hilbert space, and as the Green’s function for
the Euler equations of a semi-continuous version of the spline
smoothing problem.

1. Introduction. In this paper, we study the Green’s function for
the boundary value problem,

(1.1)
(−h2)m u(2m) + w u = v on (0, 1),

u(k)(0) = u(k)(1) = 0, k = m, . . . , 2m− 1.

Here, m is a positive integer, h is a positive parameter tending to 0,
and w is a positive measurable function, which is bounded and bounded
away from 0, i.e., there exist positive constants w1 and w2 such that

(1.2) w1 ≤ w(t) ≤ w2, a.e. t ∈ (0, 1).

Also, u(k) denotes the kth derivative, for k = 1, 2, . . . . The above
Green’s function arises in the precise analysis of the smoothing spline
estimator for the following, standard nonparametric regression prob-
lem. One observes the data (X1, Y1), (X2, Y2), . . . , (Xn, Yn), which is
interpreted as

(1.3) Yi = f0(Xi) +Di, i = 1, 2, . . . , n.
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