AN INTEGRAL OPERATOR SOLUTION TO THE MATRIX TODA EQUATIONS

HAROLD WIDOM

Abstract

In previous work the author found solutions to the Toda equations that were expressed in terms of determinants of integral operators. Here it is observed that a simple variant yields solutions to the matrix Toda equations. As an application another derivation is given of a differential equation of Sato, Miwa and Jimbo for a particular Fredholm determinant.

During the last 20 years, beginning with [2], many connections have been established between determinants of integral operators and solutions of differential equations. A result proved in [2] can be shown to be equivalent to one concerning the integral operator K on $L^{2}\left(\mathbf{R}^{+}\right)$ with kernel

$$
\frac{e^{-t\left(u+u^{-1}+v+v^{-1}\right) / 4}}{u+v}
$$

It is that the function $\tau:=\log \operatorname{det}\left(I-\lambda^{2} K^{2}\right)$ has the representation

$$
\begin{equation*}
\tau=-\frac{1}{2} \int_{t}^{\infty} s\left(\left(\frac{d \varphi}{d s}\right)^{2}-\sinh ^{2} \varphi\right) d s \tag{1}
\end{equation*}
$$

where $\varphi=\varphi(t ; \lambda)$ satisfies the differential equation

$$
\begin{equation*}
\frac{d^{2} \varphi}{d t^{2}}+\frac{1}{t} \frac{d \varphi}{d t}=\frac{1}{2} \sinh 2 \varphi \tag{2}
\end{equation*}
$$

with boundary condition

$$
\varphi(t ; \lambda) \sim 2 \lambda K_{0}(t) \quad \text { as } t \longrightarrow \infty .
$$

(Here K_{0} is the usual modified Bessel function.) The differential equation for φ, the cylindrical sinh-Gordon equation, is reducible to a special case of the Painlevé III equation. The result of [2] was the

[^0]
[^0]: Received by the editors on May 12, 1997.
 Copyright © 1998 Rocky Mountain Mathematics Consortium

