ON WELL-POSEDNESS OF ONE-SIDED NONLINEAR BOUNDARY VALUE PROBLEMS FOR ANALYTIC FUNCTIONS

S.V. ROGOSIN

Abstract

We consider two model "one-sided" nonlinear boundary value problems for analytic functions, namely, the power type Riemann-Hilbert problem and the modulus problem. Our main question is how to make the problems well-posed, i.e., to find classes of functions in which these problems possess a unique solution. These classes are those with prescribed collections of zeros in the domains and/or on their boundaries.

1. Introduction. Linear boundary value problems for analytic functions are well-studied due to numerous applications in different branches of mathematics, mechanics, queueing theory, etc. (background expositions can be found in [1], [6]). The corresponding nonlinear problems which also occur in a lot of applications are less investigated because of the much more complicated technique that needs to be used. For a description of the results in the area, we refer to the surveys [7], $[\mathbf{9}],[\mathbf{1 1}]$ and to the books $[\mathbf{3}],[\mathbf{5}],[\mathbf{1 2}]$ and to the literature cited there. Among the approaches presented are those of a constructive nature (see e.g. [5, [7], [9] where the analytic methods applied in the linear case are generalized). The latter methods cannot always be generalized for the nonlinear case especially if we consider so-called "one-sided" problems posed for one unknown function analytic in the domain satisfying certain conditions on the boundary.

This article is connected with the paper [10] in which the classes of analytic functions were found in order for the nonlinear conjugation problem to be uniquely solvable. These are classes of functions with

[^0]
[^0]: Received by the editors on July 28, 1999, and in revised form on September 3, 1999.

 AMS Mathematics Subject Classification. 30E25, 45G05, 35Q15.
 Key words and phrases. Nonlinear boundary value problems, analytic functions, well-posedness, zero distribution.

 The work is supported in part by Belarusian Fund for Fundamental Scientific Research under grant 98-085 and by Russian Fund for Basic Scientific Research under grant 99-01-00455.

