JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS Volume 12, Number 1, Spring 2000

A NOTE ON THE SOLUTION SET OF INTEGRAL INCLUSIONS

R. KANNAN AND DONAL O'REGAN

ABSTRACT. In this note we discuss the topological structure of the set of solutions of integral and differential inclusions.

1. Introduction. This paper discusses the structure of the solution set of the Volterra integral inclusion

(1.1)
$$y(t) \in h(t) + \int_0^t k(t,s)F(s,y(s)) \, ds \quad \text{for } t \in [0,T].$$

Throughout $k : [0,T] \times [0,t] \to \mathbf{R}$ and $F : [0,T] \times \mathbf{R}^n \to CK(\mathbf{R}^n)$; here $CK(\mathbf{R}^n)$ denotes the family of all nonempty, compact, convex subsets of \mathbf{R}^n . In the literature only a few results have appeared on the structure of the solution set of (1.1); we refer the reader to [1, p. 219] and the references therein. For completeness we state here the main result available in the literature [1]. Let $S(h; \mathbf{R}^n)$ denote the solution set of (1.1).

Theorem 1.1. Let $k : [0,T] \times [0,t] \to \mathbf{R}$, $F : [0,T] \times \mathbf{R}^n \to CK(\mathbf{R}^n)$ and suppose the following conditions hold:

(1.2) $t \longmapsto F(t,x)$ is measurable for every $x \in \mathbf{R}^n$

(1.3)
$$\begin{cases} x \longmapsto F(t,x) & \text{is upper semicontinuous } (u.s.c.) \\ \text{for a.e. } t \in [0,T] \end{cases}$$

(1.4)
$$\begin{cases} \text{there exists } h \in L^1[0,T] \text{ with } \|F(t,x)\| \le h(t) \\ \text{for a.e. } t \in [0,T] \text{ and every } x \in R^n \end{cases}$$

Accepted for publication on November 18, 1998.

Copyright ©2000 Rocky Mountain Mathematics Consortium