SOLUTIONS OF INTEGRO-DIFFERENTIAL EQUATIONS ON THE HALF-AXIS WITH RAPIDLY DECREASING NON-DIFFERENCE KERNELS

ANNA MITINA

ABSTRACT. The purpose of this paper is to investigate the set of all solutions of the integro-differential equation (1) and to obtain a convenient algorithm for calculation of any solution. Both objectives are obtained in the case when the integral kernel $R_{1}(x)$ is even and both kernels $R_{1}(x)$ and $R_{2}(x)$ in the equation rapidly decrease as x approaches infinity, although the integrals

$$
\phi_{i}(0) \equiv \int_{-\infty}^{\infty} R_{i}(x) d x, \quad i=1,2
$$

are not assumed to be small. To be sure that integrals in the equation converge, the sought for solutions are supposed to satisfy a condition of the type:

$$
|y(x)|<\text { const } \cdot e^{\lambda x}
$$

The asymptotic behavior of solutions as $x \rightarrow \infty$ is defined by the number $\phi_{1}(0)$. If $\phi_{1}(0)<1$, then there is a positive number p^{\star} such that all solutions grow proportionally to $e^{p^{\star} x}$ except specific ones which tend to zero as $e^{-p^{\star} x}$. If $\phi_{1}(0)=1$, then all solutions grow as linear functions except the specific ones which tend to a constant as $x \rightarrow \infty$. If $\phi_{1}(0)>1$, there exists a purely imaginary number p^{\star} such that the asymptotic behavior of solutions as $x \rightarrow \infty$ is described by an oscillating function which is a linear combination of two specific solutions which behave as $e^{i\left|p^{\star}\right| x}$ and $e^{-i\left|p^{\star}\right| x}$, respectively.

In all these cases the condition

$$
y^{\prime}(0)=\mu y(0)
$$

is found which ensures a solution to be specific.
In many physical applications involving the considered problem it is the coefficient μ which is important. To evaluate the parameter μ an asymptotic series convergent to μ is found.

[^0]
[^0]: Received by the editors on September 7, 1999, and in revised form on June 15, 2001.

