MOSER'S MATHEMAGICAL WORK ON THE EQUATION

$$
1^{k}+2^{k}+\cdots+(m-1)^{k}=m^{k}
$$

PIETER MOREE

In memory of Alf van der Poorten (1942-2010)

Abstract

If the equation of the title has an integer solution with $k \geq 2$, then $m>10^{10^{6}}$. Leo Moser showed this in 1953 by amazingly elementary methods. With the hindsight of more than 50 years, his proof can be somewhat simplified. We give a further proof showing that Moser's result can be derived from a von Staudt-Clausen type theorem. Based on more recent developments concerning this equation, we derive a new result using the divisibility properties of numbers in the sequence $\left\{2^{2 e+1}+1\right\}_{e=0}^{\infty}$. In the final section we show that certain Erdős-Moser type equations arising in a recent paper of Kellner can be solved completely.

1. Introduction. In this paper we are interested in non-trivial solutions, that is, solutions with $k \geq 2$, of the equation

$$
\begin{equation*}
1^{k}+2^{k}+\cdots+(m-2)^{k}+(m-1)^{k}=m^{k} . \tag{1}
\end{equation*}
$$

The conjecture that such solutions do not exist was formulated around 1950 by Paul Erdős in a letter to Leo Moser. For $k=1$, one has the solution $1+2=3$ (and no further solutions). From now on, we will assume that $k \geq 2$. Moser [29] established the following theorem in 1953.

Theorem 1 [29]. If (m, k) is a solution of (1), then $m>10^{10^{6}}$.

His result has since been improved. Butske et al. [6] have shown by computing rather than estimating certain quantities in Moser's original proof that $m>1.485 \cdot 10^{9321155}$. By proceeding along these lines this bound cannot be substantially improved. Butske et al. [6, page 411]

[^0]
[^0]: 2010 AMS Mathematics subject classification. Primary 11D61, 11A07.
 Received by the editors on November 18, 2010, and in revised form on March 21, 2011.

